Poisson
Poisson distribution.
Usage
var poisson = require( '@stdlib/stats/base/dists/poisson' );
poisson
Poisson distribution.
var dist = poisson;
// returns {...}
The namespace contains the following distribution functions:
cdf( x, lambda )
: Poisson distribution cumulative distribution function.logpmf( x, lambda )
: evaluate the natural logarithm of the probability mass function (PMF) for a Poisson distribution.mgf( t, lambda )
: Poisson distribution moment-generating function (MGF).pmf( x, lambda )
: Poisson distribution probability mass function (PMF).quantile( p, lambda )
: Poisson distribution quantile function.
The namespace contains the following functions for calculating distribution properties:
entropy( lambda )
: Poisson distribution entropy.kurtosis( lambda )
: Poisson distribution excess kurtosis.mean( lambda )
: Poisson distribution expected value.median( lambda )
: Poisson distribution median.mode( lambda )
: Poisson distribution mode.skewness( lambda )
: Poisson distribution skewness.stdev( lambda )
: Poisson distribution standard deviation.variance( lambda )
: Poisson distribution variance.
The namespace contains a constructor function for creating a Poisson distribution object.
Poisson( [lambda] )
: Poisson distribution constructor.
var Poisson = require( '@stdlib/stats/base/dists/poisson' ).Poisson;
var dist = new Poisson( 2.0 );
var y = dist.pmf( 3.0 );
// returns ~0.18
y = dist.pmf( 2.3 );
// returns 0.0
Examples
var poisson = require( '@stdlib/stats/base/dists/poisson' );
/*
* Let's take a customer service center example: average rate of customer inquiries is 3 per hour.
* This situation can be modeled using a Poisson distribution with λ = 3
*/
var lambda = 3;
// Mean can be used to calculate the average number of inquiries per hour:
console.log( poisson.mean( lambda ) );
// => 3
// Standard deviation can be used to calculate the measure of the spread of inquiries around the mean:
console.log( poisson.stdev( lambda ) );
// => ~1.7321
// Variance can be used to calculate the variability of the number of inquiries:
console.log( poisson.variance( lambda ) );
// => 3
// PMF can be used to calculate specific number of inquiries in an hour:
console.log( poisson.pmf( 4, lambda ) );
// => ~0.1680
// CDF can be used to calculate probability up to certain number of inquiries in an hour:
console.log( poisson.cdf( 2, lambda ) );
// => ~0.4232
// Quantile can be used to calculate the number of inquiries at which you can be 80% confident that the actual number will not exceed.
console.log( poisson.quantile( 0.8, lambda ) );
// => 4
// MGF can be used for more advanced statistical analyses and generating moments of the distribution.
console.log( poisson.mgf( 1.0, lambda ) );
// => ~173.2690