Logarithm of Probability Mass Function
Evaluate the natural logarithm of the probability mass function (PMF) for a Poisson distribution.
The probability mass function (PMF) for a Poisson random variable is
where lambda > 0
is the mean parameter.
Usage
var logpmf = require( '@stdlib/stats/base/dists/poisson/logpmf' );
logpmf( x, lambda )
Evaluates the natural logarithm of the probability mass function (PMF) for a Poisson distribution with mean parameter lambda
.
var y = logpmf( 4.0, 3.0 );
// returns ~-1.784
y = logpmf( 1.0, 3.0 );
// returns ~-1.901
y = logpmf( -1.0, 2.0 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logpmf( NaN, 2.0 );
// returns NaN
y = logpmf( 0.0, NaN );
// returns NaN
If provided a negative mean parameter lambda
, the function returns NaN
.
var y = logpmf( 2.0, -1.0 );
// returns NaN
y = logpmf( 4.0, -2.0 );
// returns NaN
If provided lambda = 0
, the function evaluates the natural logarithm of the PMF of a degenerate distribution centered at 0.0
.
var y = logpmf( 2.0, 0.0 );
// returns -Infinity
y = logpmf( 0.0, 0.0 );
// returns 0.0
logpmf.factory( lambda )
Returns a function for evaluating the natural logarithm of the probability mass function (PMF) for a Poisson distribution with mean parameter lambda
.
var mylogpmf = logpmf.factory( 1.0 );
var y = mylogpmf( 3.0 );
// returns ~-2.792
y = mylogpmf( 1.0 );
// returns ~-1.0
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var logpmf = require( '@stdlib/stats/base/dists/poisson/logpmf' );
var lambda;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = round( randu() * 10.0 );
lambda = randu() * 10.0;
y = logpmf( x, lambda );
console.log( 'x: %d, λ: %d, ln(P(X=x;λ)): %d', x, lambda.toFixed( 4 ), y.toFixed( 4 ) );
}