Stats
Statistical functions.
Usage
var statistics = require( '@stdlib/stats' );
statistics
Namespace containing statistical functions.
var stats = statistics;
// returns {...}
The namespace exposes the following statistical tests:
anova1( x, factor[, opts] )
: perform a one-way analysis of variance.bartlettTest( a[,b,...,k][, opts] )
: compute Bartlett’s test for equal variances.binomialTest( x[, n][, opts] )
: exact test for the success probability in a Bernoulli experiment.chi2gof( x, y[, ...args][, options] )
: perform a chi-square goodness-of-fit test.chi2test( x[, options] )
: perform a chi-square independence test.flignerTest( a[,b,...,k][, opts] )
: compute the Fligner-Killeen test for equal variances.kruskalTest( a[,b,...,k][, opts] )
: compute the Kruskal-Wallis test for equal medians.kstest( x, y[, ...params][, opts] )
: one-sample Kolmogorov-Smirnov goodness-of-fit test.leveneTest( x[, y, ..., z][, opts] )
: compute Levene's test for equal variances.pcorrtest( x, y[, opts] )
: compute a Pearson product-moment correlation test between paired samples.ttest( x[, y][, opts] )
: one-sample and paired Student's t-Test.ttest2( x, y[, opts] )
: two-sample Student's t-Test.vartest( x, y[, opts] )
: two-sample F-test for equal variances.wilcoxon( x[, y][, opts] )
: one-sample and paired Wilcoxon signed rank test.ztest( x, sigma[, opts] )
: one-sample z-Test.ztest2( x, y, sigmax, sigmay[, opts] )
: two-sample z-Test.
In addition, it contains an assortment of functions for computing statistics incrementally as part of the incr
sub-namespace and functions for computing statistics over iterators in the iterators
namespace.
The base
sub-namespace contains functions to calculate statistics alongside a dists
namespace containing functions related to a wide assortment of probability distributions.
base
: base (i.e., lower-level) statistical functions.
Other statistical functions included are:
kde2d()
: two-dimensional kernel density estimation.lowess( x, y[, opts] )
: locally-weighted polynomial regression via the LOWESS algorithm.padjust( pvals, method[, comparisons] )
: adjust supplied p-values for multiple comparisons.ranks( arr[, opts] )
: compute ranks for values of an array-like object.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var statistics = require( '@stdlib/stats' );
console.log( objectKeys( statistics ) );