Quantile Function
Poisson distribution quantile function.
The quantile function for a Poisson random variable returns for 0 <= p <= 1
the smallest nonnegative integer for which
where F
is the cumulative distribution function (CDF) of a Poisson distribution with mean parameter lambda > 0
.
Usage
var quantile = require( '@stdlib/stats/base/dists/poisson/quantile' );
quantile( p, lambda )
Evaluates the quantile function for a Poisson distribution with mean parameter lambda
at a probability p
.
var y = quantile( 0.5, 2.0 );
// returns 2
y = quantile( 0.9, 4.0 );
// returns 7
y = quantile( 0.1, 200.0 );
// returns 182
If provided an input probability p
outside the interval [0,1]
, the function returns NaN
.
var y = quantile( 1.9, 0.5 );
// returns NaN
y = quantile( -0.1, 0.5 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
var y = quantile( NaN, 1.0 );
// returns NaN
y = quantile( 0.0, NaN );
// returns NaN
If provided a negative lambda
, the function returns NaN
.
var y = quantile( 0.4, -1.0 );
// returns NaN
If provided lambda = 0
, the function evaluates the quantile function of a degenerate distribution centered at 0.0
.
var y = quantile( 0.1, 0.0 );
// returns 0.0
y = quantile( 0.9, 0.0 );
// returns 0.0
quantile.factory( lambda )
Returns a function for evaluating the quantile function of a Poisson distribution with mean parameter lambda
.
var myquantile = quantile.factory( 5.0 );
var y = myquantile( 0.4 );
// returns 4
y = myquantile( 0.8 );
// returns 7
y = myquantile( 1.0 );
// returns Infinity
Examples
var randu = require( '@stdlib/random/base/randu' );
var quantile = require( '@stdlib/stats/base/dists/poisson/quantile' );
var lambda;
var p;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
p = randu();
lambda = randu() * 10.0;
y = quantile( p, lambda );
console.log( 'p: %d, λ: %d, Q(p;λ): %d', p.toFixed( 4 ), lambda.toFixed( 4 ), y );
}