Binomial
Binomial distribution.
Usage
var binomial = require( '@stdlib/stats/base/dists/binomial' );
binomial
Binomial distribution.
var dist = binomial;
// returns {...}
The namespace contains the following distribution functions:
cdf( x, n, p )
: binomial distribution cumulative distribution function.logpmf( x, n, p )
: evaluate the natural logarithm of the probability mass function (PMF) for a binomial distribution.mgf( t, n, p )
: binomial distribution moment-generating function (MGF).pmf( x, n, p )
: binomial distribution probability mass function (PMF).quantile( r, n, p )
: binomial distribution quantile function.
The namespace contains the following functions for calculating distribution properties:
entropy( n, p )
: binomial distribution entropy.kurtosis( n, p )
: binomial distribution excess kurtosis.mean( n, p )
: binomial distribution expected value.median( n, p )
: binomial distribution median.mode( n, p )
: binomial distribution mode.skewness( n, p )
: binomial distribution skewness.stdev( n, p )
: binomial distribution standard deviation.variance( n, p )
: binomial distribution variance.
The namespace contains a constructor function for creating a binomial distribution object.
Binomial( [n, p] )
: binomial distribution constructor.
var Binomial = require( '@stdlib/stats/base/dists/binomial' ).Binomial;
var dist = new Binomial( 10, 0.4 );
var mu = dist.mean;
// returns 4
Examples
var binomial = require( '@stdlib/stats/base/dists/binomial' );
/*
* Let's take an example of rolling a fair dice 10 times and counting the number of times a 6 is rolled.
* This situation can be modeled using a Binomial distribution with n = 10 and p = 1/6
*/
var n = 10;
var p = 1/6;
// Mean can be used to calculate the average number of times a 6 is rolled:
console.log( binomial.mean( n, p ) );
// => ~1.6667
// PMF can be used to calculate the probability of getting a certain number of 6s (say 3 sixes):
console.log( binomial.pmf( 3, n, p ) );
// => ~0.1550
// CDF can be used to calculate probability up to certain number of 6s (say up to 3 sixes):
console.log( binomial.cdf( 3, n, p ) );
// => ~0.9303
// Quantile can be used to calculate the number of 6s at which you can be 80% confident that the actual number will not exceed.
console.log( binomial.quantile( 0.8, n, p ) );
// => 3
// Standard deviation can be used to calculate the measure of the spread of 6s around the mean:
console.log( binomial.stdev( n, p ) );
// => ~1.1785
// Skewness can be used to calculate the asymmetry of the distribution of 6s:
console.log( binomial.skewness( n, p ) );
// => ~0.5657
// MGF can be used for more advanced statistical analyses and generating moments of the distribution:
console.log( binomial.mgf( 0.5, n, p ) );
// => ~2.7917