Logarithm of Probability Mass Function
Evaluate the natural logarithm of the probability mass function (PMF) for a binomial distribution.
The probability mass function (PMF) for a binomial random variable is
where n
is the number of trials and 0 <= p <= 1
is the success probability.
Usage
var logpmf = require( '@stdlib/stats/base/dists/binomial/logpmf' );
logpmf( x, n, p )
Evaluates the natural logarithm of the probability mass function (PMF) for a binomial distribution with number of trials n
and success probability p
.
var y = logpmf( 3.0, 20, 0.2 );
// returns ~-1.583
y = logpmf( 21.0, 20, 0.2 );
// returns -Infinity
y = logpmf( 5.0, 10, 0.4 );
// returns ~-1.606
y = logpmf( 0.0, 10, 0.4 );
// returns ~-5.108
If provided NaN
as any argument, the function returns NaN
.
var y = logpmf( NaN, 20, 0.5 );
// returns NaN
y = logpmf( 0.0, NaN, 0.5 );
// returns NaN
y = logpmf( 0.0, 20, NaN );
// returns NaN
If provided a number of trials n
which is not a nonnegative integer, the function returns NaN
.
var y = logpmf( 2.0, 1.5, 0.5 );
// returns NaN
y = logpmf( 2.0, -2.0, 0.5 );
// returns NaN
If provided a success probability p
outside of [0,1]
, the function returns NaN
.
var y = logpmf( 2.0, 20, -1.0 );
// returns NaN
y = logpmf( 2.0, 20, 1.5 );
// returns NaN
logpmf.factory( n, p )
Returns a function for evaluating the probability mass function (PMF) of a binomial distribution with number of trials n
and success probability p
.
var mylogpmf = logpmf.factory( 10, 0.5 );
var y = mylogpmf( 3.0 );
// returns ~-2.144
y = mylogpmf( 5.0 );
// returns ~-1.402
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var logpmf = require( '@stdlib/stats/base/dists/binomial/logpmf' );
var i;
var n;
var p;
var x;
var y;
for ( i = 0; i < 10; i++ ) {
x = round( randu() * 20.0 );
n = round( randu() * 100.0 );
p = randu();
y = logpmf( x, n, p );
console.log( 'x: %d, n: %d, p: %d, ln(P(X = x;n,p)): %d', x, n, p.toFixed( 4 ), y.toFixed( 4 ) );
}