Base
Base ndarray.
Usage
var ns = require( '@stdlib/ndarray/base' );
ns
Base ndarray.
var o = ns;
// returns {...}
assign( arrays )
: assign elements in an input ndarray to elements in an output ndarray.binaryLoopOrder( shape, stridesX, stridesY, stridesZ )
: reorder ndarray dimensions and associated strides for loop interchange.binaryBlockSize( dtypeX, dtypeY, dtypeZ )
: resolve a loop block size for multi-dimensional array tiled loops.bind2vind( shape, strides, offset, order, idx, mode )
: convert a linear index in an underlying data buffer to a linear index in an array view.broadcastArray( arr, shape )
: broadcast an ndarray to a specified shape.broadcastArrays( arrays )
: broadcast ndarrays to a common shape.broadcastScalar( value, dtype, shape, order )
: broadcast a scalar value to anndarray
having a specified shape.broadcastShapes( shapes )
: broadcast array shapes to a single shape.bufferCtors( dtype )
: ndarray data buffer constructors.bufferDataTypeEnum( buffer )
: return the data type enumeration constant of an ndarray data buffer.bufferDataType( buffer )
: return the data type of an ndarray data buffer.buffer( dtype, size )
: create a contiguous linear ndarray data buffer.bytesPerElement( dtype )
: return the number of bytes per element provided an underlying array data type.char2dtype( [ch] )
: return the data type string associated with a provided single letter character abbreviation.clampIndex( idx, max )
: restrict an index to the interval[0,max]
.ndarray( dtype, buffer, shape, strides, offset, order )
: create a multidimensional array.data( x )
: return the underlying data buffer of a provided ndarray.dtypeChar( [dtype] )
: return the single letter abbreviation for an underlying array data type.dtypeDesc( [dtype] )
: return the description for a specified data type.dtypeEnum2Str( dtype )
: return the data type string associated with an ndarray data type enumeration constant.dtypeResolveEnum( dtype )
: return the enumeration constant associated with a supported ndarray data type value.dtypeResolveStr( dtype )
: return the data type string associated with a supported ndarray data type value.dtypeStr2Enum( dtype )
: return the enumeration constant associated with an ndarray data type string.dtype( x )
: return the data type of a provided ndarray.dtype2c( dtype )
: return the C data type associated with a provided data type value.dtypes2signatures( dtypes, nin, nout )
: transform a list of array argument data types into a list of signatures.emptyLike( x )
: create an uninitialized ndarray having the same shape and data type as a provided ndarray.empty( dtype, shape, order )
: create an uninitialized ndarray having a specified shape and data type.expandDimensions( x, axis )
: expand the shape of an array by inserting a new dimension of size one at a specified axis.fill( x, value )
: fill an input ndarray with a specified value.flag( x, name )
: return a specified flag for a provided ndarray.flags( x, copy )
: return the flags of a provided ndarray.fliplr( x, writable )
: return a view of an input ndarray in which the order of elements along the last dimension is reversed.flipud( x, writable )
: return a view of an input ndarray in which the order of elements along the second-to-last dimension is reversed.forEach( arrays, fcn[, thisArg] )
: invoke a callback function once for each ndarray element.scalar2ndarrayLike( x, value )
: convert a scalar value to a zero-dimensional ndarray having the same data type as a provided ndarray.scalar2ndarray( value, dtype, order )
: convert a scalar value to a zero-dimensional ndarray.ind( idx, max, mode )
: return an index given an index mode.ind2sub( shape, strides, offset, order, idx, mode )
: convert a linear index to an array of subscripts.iterationOrder( strides )
: given a stride array, determine array iteration order.map( arrays, fcn[, thisArg] )
: apply a callback function to elements in an input ndarray and assign results to elements in an output ndarray.maxViewBufferIndex( shape, strides, offset )
: compute the maximum linear index in an underlying data buffer accessible to an array view.maybeBroadcastArray( arr, shape )
: broadcast an ndarray to a specified shape if and only if the specified shape differs from the provided ndarray's shape.maybeBroadcastArrays( arrays )
: broadcast ndarrays to a common shape.metaDataProps( meta, dtypes, obj )
: define non-enumerable read-only properties which expose ndarray function meta data.minSignedIntegerDataType( value )
: determine the minimum ndarray data type for storing a provided signed integer value.minUnsignedIntegerDataType( value )
: determine the minimum ndarray data type for storing a provided unsigned integer value.minViewBufferIndex( shape, strides, offset )
: compute the minimum linear index in an underlying data buffer accessible to an array view.minmaxViewBufferIndex( shape, strides, offset )
: compute the minimum and maximum linear indices in an underlying data buffer which are accessible to an array view.ndarraylike2ndarray( x )
: convert an ndarray-like object to anndarray
.ndarraylike2object( x )
: convert anndarray
-like object to an object likely to have the same "shape".ndims( x )
: return the number of ndarray dimensions.nextCartesianIndex( shape, order, idx, dim )
: return the next Cartesian index (i.e., set of subscripts/dimension indices).nonsingletonDimensions( shape )
: return the number of non-singleton dimensions.normalizeIndex( idx, max )
: normalize an index to the interval[0,max]
.normalizeIndices( indices, max )
: normalize a list of indices to the interval[0,max]
.nullaryLoopOrder( shape, stridesX )
: reorder ndarray dimensions and associated strides for loop interchange.nullaryBlockSize( dtypeX )
: resolve a loop block size for multi-dimensional array tiled loops.nullary( arrays, fcn )
: apply a nullary callback and assign results to elements in an output ndarray.numelDimension( x, dim )
: return the size (i.e., number of elements) of a specified dimension for a provided ndarray.numel( shape )
: return the number of elements in an array.offset( x )
: return the index offset specifying the underlying buffer index of the first iterated ndarray element.order( x )
: return the layout order of a provided ndarray.outputPolicyEnum2Str( policy )
: return the policy string associated with an output ndarray data type policy enumeration constant.outputPolicyResolveEnum( policy )
: return the enumeration constant associated with a supported ndarray data type policy value.outputPolicyResolveStr( dtype )
: return the policy string associated with a supported ndarray data type policy value.outputPolicyStr2Enum( policy )
: return the enumeration constant associated with an output ndarray data type policy string.prependSingletonDimensions( x, n )
: prepend singleton dimensions.removeSingletonDimensions( x )
: remove singleton dimensions.reverseDimension( x, dim, writable )
: return a view of an input ndarray in which the order of elements along a specified dimension is reversed.reverse( x, writable )
: return a view of an input ndarray in which the order of elements along each dimension is reversed.serializeMetaData( x )
: serialize ndarray meta data.shape( x, copy )
: return the shape of a provided ndarray.shape2strides( shape, order )
: generate a stride array from an array shape.singletonDimensions( shape )
: return the number of singleton dimensions.sliceAssign( x, y, slice, strict )
: assign element values from a broadcasted inputndarray
to corresponding elements in an outputndarray
view.sliceDimensionFrom( x, dim, start, strict, writable )
: return a shifted view of an input ndarray along a specified dimension.sliceDimensionTo( x, dim, stop, strict, writable )
: return a truncated view of an input ndarray along a specified dimension.sliceDimension( x, dim, slice, strict, writable )
: return a view of an input ndarray when sliced along a specified dimension.sliceFrom( x, start, strict, writable )
: return a shifted view of an input ndarray.sliceTo( x, stop, strict, writable )
: return a truncated view of an input ndarray.slice( x, slice, strict, writable )
: return a view of an input ndarray.spreadDimensions( ndims, x, dims )
: expand the shape of an array to a specified dimensionality by spreading its dimensions to specified dimension indices and inserting dimensions of size one for the remaining dimensions.stride( x, dim )
: return the stride along a specified dimension for a provided ndarray.strides( x, copy )
: return the strides of a provided ndarray.strides2offset( shape, strides )
: determine the index offset which specifies the location of the first indexed value in a multidimensional array based on a stride array.strides2order( strides )
: determine the order of a multidimensional array based on a provided stride array.sub2ind( shape, strides, offset, ...subscripts, mode )
: convert subscripts to a linear index.ndarray2array( buffer, shape, strides, offset, order )
: convert an ndarray buffer to a generic array.toNormalizedIndices( indices, max )
: normalize a list of indices to the interval[0,max]
.toReversed( x )
: return a new ndarray where the order of elements of an input ndarray is reversed along each dimension.toUniqueNormalizedIndices( indices, max )
: return a list of unique indices after normalizing to the interval[0,max]
.transpose( x )
: transpose a matrix (or a stack of matrices).unaryBy( arrays, fcn, clbk[, thisArg] )
: apply a unary function to each element in an input ndarray according to a callback function and assign results to elements in an output ndarray.unaryLoopOrder( shape, stridesX, stridesY )
: reorder ndarray dimensions and associated strides for loop interchange.unaryOutputDataType( dtype, policy )
: resolve the output ndarray data type for a unary function.unaryBlockSize( dtypeX, dtypeY )
: resolve a loop block size for multi-dimensional array tiled loops.unary( arrays, fcn )
: apply a unary callback to elements in an input ndarray and assign results to elements in an output ndarray.vind2bind( shape, strides, offset, order, idx, mode )
: convert a linear index in an array view to a linear index in an underlying data buffer.wrapIndex( idx, max )
: wrap an index on the interval[0,max]
.zerosLike( x )
: create a zero-filled ndarray having the same shape and data type as a provided ndarray.zeros( dtype, shape, order )
: create a zero-filled ndarray having a specified shape and data type.
The namespace contains the following sub-namespaces:
assert
: base ndarray assertion utilities.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var ns = require( '@stdlib/ndarray/base' );
console.log( objectKeys( ns ) );