gnansumkbn
Calculate the sum of strided array elements, ignoring
NaN
values and using an improved Kahan–Babuška algorithm.
Usage
var gnansumkbn = require( '@stdlib/blas/ext/base/gnansumkbn' );
gnansumkbn( N, x, stride )
Computes the sum of strided array elements, ignoring NaN
values and using an improved Kahan–Babuška algorithm.
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;
var v = gnansumkbn( N, x, 1 );
// returns 1.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Array
ortyped array
. - stride: index increment for
x
.
The N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to compute the sum of every other element in x
,
var floor = require( '@stdlib/math/base/special/floor' );
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
var N = floor( x.length / 2 );
var v = gnansumkbn( N, x, 2 );
// returns 5.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = gnansumkbn( N, x1, 2 );
// returns 5.0
gnansumkbn.ndarray( N, x, stride, offset )
Computes the sum of strided array elements, ignoring NaN
values and using an improved Kahan–Babuška algorithm and alternative indexing semantics.
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;
var v = gnansumkbn.ndarray( N, x, 1, 0 );
// returns 1.0
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in x
starting from the second value
var floor = require( '@stdlib/math/base/special/floor' );
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
var N = floor( x.length / 2 );
var v = gnansumkbn.ndarray( N, x, 2, 1 );
// returns 5.0
Notes
- If
N <= 0
, both functions return0.0
. - Depending on the environment, the typed versions (
dnansumkbn
,snansumkbn
, etc.) are likely to be significantly more performant.
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var gnansumkbn = require( '@stdlib/blas/ext/base/gnansumkbn' );
var x;
var i;
x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( randu()*100.0 );
}
}
console.log( x );
var v = gnansumkbn( x.length, x, 1 );
console.log( v );
References
- Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.