gnansumkbn
Calculate the sum of strided array elements, ignoring
NaN
values and using an improved Kahan–Babuška algorithm.
Usage
var gnansumkbn = require( '@stdlib/blas/ext/base/gnansumkbn' );
gnansumkbn( N, x, strideX )
Computes the sum of strided array elements, ignoring NaN
values and using an improved Kahan–Babuška algorithm.
var x = [ 1.0, -2.0, NaN, 2.0 ];
var v = gnansumkbn( x.length, x, 1 );
// returns 1.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Array
ortyped array
. - strideX: stride length for
x
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element:
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
var v = gnansumkbn( 5, x, 2 );
// returns 5.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = gnansumkbn( 4, x1, 2 );
// returns 5.0
gnansumkbn.ndarray( N, x, strideX, offsetX )
Computes the sum of strided array elements, ignoring NaN
values and using an improved Kahan–Babuška algorithm and alternative indexing semantics.
var x = [ 1.0, -2.0, NaN, 2.0 ];
var v = gnansumkbn.ndarray( x.length, x, 1, 0 );
// returns 1.0
The function has the following additional parameters:
- offsetX: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element:
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
var v = gnansumkbn.ndarray( 5, x, 2, 1 );
// returns 5.0
Notes
- If
N <= 0
, both functions return0.0
. - Depending on the environment, the typed versions (
dnansumkbn
,snansumkbn
, etc.) are likely to be significantly more performant.
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var gnansumkbn = require( '@stdlib/blas/ext/base/gnansumkbn' );
function rand() {
if ( bernoulli( 0.7 ) > 0 ) {
return discreteUniform( 0, 100 );
}
return NaN;
}
var x = filledarrayBy( 10, 'float64', rand );
console.log( x );
var v = gnansumkbn( x.length, x, 1 );
console.log( v );
References
- Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.