gnansumpw

Calculate the sum of strided array elements, ignoring NaN values and using pairwise summation.

Usage

var gnansumpw = require( '@stdlib/blas/ext/base/gnansumpw' );

gnansumpw( N, x, strideX )

Computes the sum of strided array elements, ignoring NaN values and using pairwise summation.

var x = [ 1.0, -2.0, NaN, 2.0 ];

var v = gnansumpw( x.length, x, 1 );
// returns 1.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Array or typed array.
  • strideX: stride length for x.

The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element:

var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];

var v = gnansumpw( 5, x, 2 );
// returns 5.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = gnansumpw( 4, x1, 2 );
// returns 5.0

gnansumpw.ndarray( N, x, strideX, offsetX )

Computes the sum of strided array elements, ignoring NaN values and using pairwise summation and alternative indexing semantics.

var x = [ 1.0, -2.0, NaN, 2.0 ];

var v = gnansumpw.ndarray( x.length, x, 1, 0 );
// returns 1.0

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element:

var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];

var v = gnansumpw.ndarray( 5, x, 2, 1 );
// returns 5.0

Notes

  • If N <= 0, both functions return 0.0.
  • In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
  • Depending on the environment, the typed versions (dnansumpw, snansumpw, etc.) are likely to be significantly more performant.

Examples

var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var gnansumpw = require( '@stdlib/blas/ext/base/gnansumpw' );

function rand() {
    if ( bernoulli( 0.7 ) > 0 ) {
        return discreteUniform( 0, 100 );
    }
    return NaN;
}

var x = filledarrayBy( 10, 'float64', rand );
console.log( x );

var v = gnansumpw( x.length, x, 1 );
console.log( v );

References

  • Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." SIAM Journal on Scientific Computing 14 (4): 783–99. doi:10.1137/0914050.
Did you find this page helpful?