gnansumors
Calculate the sum of strided array elements, ignoring
NaNvalues and using ordinary recursive summation.
Usage
var gnansumors = require( '@stdlib/blas/ext/base/gnansumors' );
gnansumors( N, x, strideX )
Computes the sum of strided array elements, ignoring NaN values and using ordinary recursive summation.
var x = [ 1.0, -2.0, NaN, 2.0 ];
var v = gnansumors( x.length, x, 1 );
// returns 1.0
The function has the following parameters:
- N: number of indexed elements.
 - x: input 
Arrayortyped array. - strideX: stride length for 
x. 
The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element:
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
var v = gnansumors( 5, x, 2 );
// returns 5.0
Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array/float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = gnansumors( 4, x1, 2 );
// returns 5.0
gnansumors.ndarray( N, x, strideX, offsetX )
Computes the sum of strided array elements, ignoring NaN values and using ordinary recursive summation and alternative indexing semantics.
var x = [ 1.0, -2.0, NaN, 2.0 ];
var v = gnansumors.ndarray( x.length, x, 1, 0 );
// returns 1.0
The function has the following additional parameters:
- offsetX: starting index for 
x. 
While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element:
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
var v = gnansumors.ndarray( 5, x, 2, 1 );
// returns 5.0
Notes
- If 
N <= 0, both functions return0.0. - Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.
 - Depending on the environment, the typed versions (
dnansumors,snansumors, etc.) are likely to be significantly more performant. 
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var gnansumors = require( '@stdlib/blas/ext/base/gnansumors' );
function rand() {
    if ( bernoulli( 0.7 ) > 0 ) {
        return discreteUniform( 0, 100 );
    }
    return NaN;
}
var x = filledarrayBy( 10, 'float64', rand );
console.log( x );
var v = gnansumors( x.length, x, 1 );
console.log( v );