zscal
Scales a double-precision complex floating-point vector by a double-precision complex floating-point constant.
Usage
var zscal = require( '@stdlib/blas/base/zscal' );
zscal( N, za, zx, strideX )
Scales values from zx
by za
.
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var zx = new Complex128Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var za = new Complex128( 2.0, 0.0 );
zscal( 3, za, zx, 1 );
var z = zx.get( 0 );
// returns <Complex128>
var re = real( z );
// returns 2.0
var im = imag( z );
// returns 2.0
The function has the following parameters:
- N: number of indexed elements.
- za: scalar
Complex128
constant. - zx: input
Complex128Array
. - strideX: index increment for
zx
.
The N
and stride parameters determine how values from zx
are scaled by za
. For example, to scale every other value in zx
by za
,
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var za = new Complex128( 2.0, 0.0 );
zscal( 2, za, zx, 2 );
var z = zx.get( 2 );
// returns <Complex128>
var re = real( z );
// returns 10.0
var im = imag( z );
// returns 12.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
// Initial array:
var zx0 = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
// Define a scalar constant:
var za = new Complex128( 2.0, 2.0 );
// Create an offset view:
var zx1 = new Complex128Array( zx0.buffer, zx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Scales every other value from `zx1` by `za`...
zscal( 3, za, zx1, 1 );
var z = zx0.get( 1 );
// returns <Complex128>
var re = real( z );
// returns -2.0
var im = imag( z );
// returns 14.0
zscal.ndarray( N, za, zx, strideX, offsetX )
Scales values from zx
by za
using alternative indexing semantics.
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var za = new Complex128( 2.0, 2.0 );
zscal.ndarray( 3, za, zx, 1, 0 );
var z = zx.get( 0 );
// returns <Complex128>
var re = real( z );
// returns -2.0
var im = imag( z );
// returns 6.0
The function has the following additional parameters:
- offsetX: starting index for
zx
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to scale every other value in the input strided array starting from the second element,
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var za = new Complex128( 2.0, 2.0 );
zscal.ndarray( 2, za, zx, 2, 1 );
var z = zx.get( 3 );
// returns <Complex128>
var re = real( z );
// returns -2.0
var im = imag( z );
// returns 30.0
Notes
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var zscal = require( '@stdlib/blas/base/zscal' );
function rand() {
return new Complex128( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
var zx = filledarrayBy( 10, 'complex128', rand );
console.log( zx.toString() );
var za = new Complex128( 2.0, 2.0 );
console.log( za.toString() );
// Scales elements from `zx` by `za`:
zscal( zx.length, za, zx, 1 );
console.log( zx.get( zx.length-1 ).toString() );
C APIs
Usage
#include "stdlib/blas/base/zscal.h"
c_zscal( N, za, *ZX, strideX )
Scales values from ZX
by za
.
#include "stdlib/complex/float64/ctor.h"
double zx[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
const stdlib_complex128_t za = stdlib_complex128( 2.0, 2.0 );
c_zscal( 4, za, (void *)zx, 1 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - za:
[in] stdlib_complex128_t
scalar constant. - ZX:
[inout] void*
input array. - strideX:
[in] CBLAS_INT
index increment forZX
.
void c_zscal( const CBLAS_INT N, const stdlib_complex128_t za, void *ZX, const CBLAS_INT strideX );
Examples
#include "stdlib/blas/base/zscal.h"
#include "stdlib/complex/float64/ctor.h"
#include <stdio.h>
int main( void ) {
// Create a strided array of interleaved real and imaginary components:
double zx[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
// Create a complex scalar:
const stdlib_complex128_t ca = stdlib_complex128( 2.0, 2.0 );
// Specify the number of elements:
const int N = 4;
// Specify stride length:
const int strideX = 1;
// Scale the elements of the array:
c_zscal( N, za, (void *)zx, strideX );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "zx[ %i ] = %f + %fj\n", i, zx[ i*2 ], zx[ (i*2)+1 ] );
}
}