zswap

Interchange two complex double-precision floating-point vectors.

This BLAS level 1 routine interchanges complex double-precision floating-point vectors x and y. The operation is performed in-place, with x being overwritten with the values from y, and y being overwritten with the values from x.

Usage

var zswap = require( '@stdlib/blas/base/zswap' );

zswap( N, x, strideX, y, strideY )

Interchanges two complex double-precision floating-point vectors.

var Complex128Array = require( '@stdlib/array/complex128' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

zswap( x.length, x, 1, y, 1 );

var z = y.get( 0 );
// returns <Complex128>

var re = real( z );
// returns 1.0

var im = imag( z );
// returns 2.0

z = x.get( 0 );
// returns <Complex128>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: first input Complex128Array.
  • strideX: index increment for x.
  • y: second input Complex128Array.
  • strideY: index increment for y.

The N and stride parameters determine how values from x are interchanged with values from y. For example, to interchange in reverse order every other value in x into the first N elements of y,

var Complex128Array = require( '@stdlib/array/complex128' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

zswap( 2, x, -2, y, 1 );

var z = y.get( 0 );
// returns <Complex128>

var re = real( z );
// returns 5.0

var im = imag( z );
// returns 6.0

z = x.get( 0 );
// returns <Complex128>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Complex128Array = require( '@stdlib/array/complex128' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );

// Initial arrays...
var x0 = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y0 = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var x1 = new Complex128Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Complex128Array( y0.buffer, y0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

// Interchange in reverse order every other value from `x1` into `y1`...
zswap( 2, x1, -2, y1, 1 );

var z = y0.get( 2 );
// returns <Complex128>

var re = real( z );
// returns 7.0

var im = imag( z );
// returns 8.0

z = x0.get( 1 );
// returns <Complex128>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

zswap.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Interchanges two complex double-precision floating-point vectors using alternative indexing semantics.

var Complex128Array = require( '@stdlib/array/complex128' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

zswap.ndarray( x.length, x, 1, 0, y, 1, 0 );

var z = y.get( 0 );
// returns <Complex128>

var re = real( z );
// returns 1.0

var im = imag( z );
// returns 2.0

z = x.get( 0 );
// returns <Complex128>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to interchange every other value in x starting from the second value into the last N elements in y where x[i] = y[n], x[i+2] = y[n-1], and so on,

var Complex128Array = require( '@stdlib/array/complex128' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

zswap.ndarray( 2, x, 2, 1, y, -1, y.length-1 );

var z = y.get( y.length-1 );
// returns <Complex128>

var re = real( z );
// returns 3.0

var im = imag( z );
// returns 4.0

z = x.get( x.length-1 );
// returns <Complex128>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

Notes

  • If N <= 0, both functions leave x and y unchanged.
  • zswap() corresponds to the BLAS level 1 function zswap.

Examples

var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var zswap = require( '@stdlib/blas/base/zswap' );

function rand() {
    return new Complex128( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}

var x = filledarrayBy( 10, 'complex128', rand );
console.log( x.get( 0 ).toString() );

var y = filledarrayBy( 10, 'complex128', rand );
console.log( y.get( 0 ).toString() );

// Swap elements in `x` into `y` starting from the end of `y`:
zswap( x.length, x, 1, y, -1 );
console.log( x.get( x.length-1 ).toString() );
console.log( y.get( y.length-1 ).toString() );

C APIs

Usage

#include "stdlib/blas/base/zswap.h"

c_zswap( N, *X, strideX, *Y, strideY )

Interchanges two complex double-precision floating-point vectors.

double x[] = { 1.0, 2.0, 3.0, 4.0 }; // interleaved real and imaginary components
double y[] = { 5.0, 6.0, 7.0, 8.0 };

c_zswap( 2, (void *)x, 1, (void *)y, 1 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [inout] void* first input array.
  • strideX: [in] CBLAS_INT index increment for X.
  • Y: [inout] void* second input array.
  • strideY: [in] CBLAS_INT index increment for Y.
void c_zswap( const CBLAS_INT N, void *X, const CBLAS_INT strideX, void *Y, const CBLAS_INT strideY );

c_zswap_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY )

Interchanges two complex double-precision floating-point vectors using alternative indexing semantics.

double x[] = { 1.0, 2.0, 3.0, 4.0 }; // interleaved real and imaginary components
double y[] = { 5.0, 6.0, 7.0, 8.0 };

c_zswap_ndarray( 2, (void *)x, 1, 0, (void *)y, 1, 0 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [inout] void* first input array.
  • strideX: [in] CBLAS_INT index increment for X.
  • offsetX: [in] CBLAS_INT starting index for X.
  • Y: [inout] void* second input array.
  • strideY: [in] CBLAS_INT index increment for Y.
  • offsetY: [in] CBLAS_INT starting index for Y.
void c_zswap_ndarray( const CBLAS_INT N, void *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, void *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );

Examples

#include "stdlib/blas/base/zswap.h"
#include <stdio.h>

int main( void ) {
    // Create strided arrays:
    double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
    double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

    // Specify the number of elements:
    const int N = 4;

    // Specify stride lengths:
    const int strideX = 1;
    const int strideY = -1;

    // Swap elements:
    c_zswap( N, (void *)x, strideX, (void *)y, strideY );

    // Print the result:
    for ( int i = 0; i < N; i++ ) {
        printf( "x[ %i ] = %lf + %lfj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
        printf( "y[ %i ] = %lf + %lfj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
    }

    // Swap elements using alternative indexing semantics:
    c_zswap_ndarray( N, (void *)x, -strideX, N-1, (void *)y, strideY, N-1 );

    // Print the result:
    for ( int i = 0; i < N; i++ ) {
        printf( "x[ %i ] = %lf + %lfj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
        printf( "y[ %i ] = %lf + %lfj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
    }
}
Did you find this page helpful?