dnanmskmin
Calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring
NaN
values.
Usage
var dnanmskmin = require( '@stdlib/stats/base/dnanmskmin' );
dnanmskmin( N, x, strideX, mask, strideMask )
Computes the minimum value of a double-precision floating-point strided array x
according to a mask
, ignoring NaN
values.
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x = new Float64Array( [ 1.0, -2.0, -4.0, 2.0, NaN ] );
var mask = new Uint8Array( [ 0, 0, 1, 0, 0 ] );
var v = dnanmskmin( x.length, x, 1, mask, 1 );
// returns -2.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: index increment for
x
. - mask: mask
Uint8Array
. If amask
array element is0
, the corresponding element inx
is considered valid and included in computation. If amask
array element is1
, the corresponding element inx
is considered invalid/missing and excluded from computation. - strideMask: index increment for
mask
.
The N
and stride
parameters determine which elements are accessed at runtime. For example, to compute the minimum value of every other element in x
,
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 1.0, 2.0, 7.0, -2.0, -4.0, 3.0, -5.0, -6.0 ] );
var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var N = floor( x.length / 2 );
var v = dnanmskmin( N, x, 2, mask, 2 );
// returns -4.0
Note that indexing is relative to the first index. To introduce offsets, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var floor = require( '@stdlib/math/base/special/floor' );
var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = dnanmskmin( N, x1, 2, mask1, 2 );
// returns -2.0
dnanmskmin.ndarray( N, x, strideX, offsetX, mask, strideMask, offsetMask )
Computes the minimum value of a double-precision floating-point strided array according to a mask
, ignoring NaN
values and using alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x = new Float64Array( [ 1.0, -2.0, -4.0, 2.0, NaN ] );
var mask = new Uint8Array( [ 0, 0, 1, 0, 0 ] );
var v = dnanmskmin.ndarray( x.length, x, 1, 0, mask, 1, 0 );
// returns -2.0
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetMask: starting index for
mask
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the minimum value for every other value in x
starting from the second value
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ] );
var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var N = floor( x.length / 2 );
var v = dnanmskmin.ndarray( N, x, 2, 1, mask, 2, 1 );
// returns -2.0
Notes
- If
N <= 0
, both functions returnNaN
.
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var dnanmskmin = require( '@stdlib/stats/base/dnanmskmin' );
var mask;
var x;
var i;
x = new Float64Array( 10 );
mask = new Uint8Array( x.length );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
mask[ i ] = 1;
} else {
mask[ i ] = 0;
}
if ( randu() < 0.1 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
}
console.log( x );
console.log( mask );
var v = dnanmskmin( x.length, x, 1, mask, 1 );
console.log( v );