dmskmin
Calculate the minimum value of a double-precision floating-point strided array according to a mask.
Usage
var dmskmin = require( '@stdlib/stats/base/dmskmin' );
dmskmin( N, x, strideX, mask, strideMask )
Computes the minimum value of a double-precision floating-point strided array according to a mask.
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x = new Float64Array( [ 1.0, -2.0, -4.0, 2.0 ] );
var mask = new Uint8Array( [ 0, 0, 1, 0 ] );
var v = dmskmin( x.length, x, 1, mask, 1 );
// returns -2.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: stride length for
x
. - mask: mask
Uint8Array
. If amask
array element is0
, the corresponding element inx
is considered valid and included in computation. If amask
array element is1
, the corresponding element inx
is considered invalid/missing and excluded from computation. - strideMask: stride length for
mask
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the minimum value of every other element in x
,
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x = new Float64Array( [ 1.0, 2.0, 7.0, -2.0, -4.0, 3.0, -5.0, -6.0 ] );
var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var v = dmskmin( 4, x, 2, mask, 2 );
// returns -4.0
Note that indexing is relative to the first index. To introduce offsets, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dmskmin( 4, x1, 2, mask1, 2 );
// returns -2.0
dmskmin.ndarray( N, x, strideX, offsetX, mask, strideMask, offsetMask )
Computes the minimum value of a double-precision floating-point strided array according to a mask and using alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x = new Float64Array( [ 1.0, -2.0, -4.0, 2.0 ] );
var mask = new Uint8Array( [ 0, 0, 1, 0 ] );
var v = dmskmin.ndarray( x.length, x, 1, 0, mask, 1, 0 );
// returns -2.0
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetMask: starting index for
mask
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on a starting indices. For example, to calculate the minimum value for every other element in x
starting from the second element
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ] );
var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var v = dmskmin.ndarray( 4, x, 2, 1, mask, 2, 1 );
// returns -2.0
Notes
- If
N <= 0
, both functions returnNaN
.
Examples
var uniform = require( '@stdlib/random/array/uniform' );
var bernoulli = require( '@stdlib/random/array/bernoulli' );
var dmskmin = require( '@stdlib/stats/base/dmskmin' );
var uniformOptions = {
'dtype': 'float64'
};
var bernoulliOptions = {
'dtype': 'uint8'
};
var x = uniform( 10, -50.0, 50.0, uniformOptions );
var mask = bernoulli( x.length, 0.2, bernoulliOptions );
console.log( x );
console.log( mask );
var v = dmskmin( x.length, x, 1, mask, 1 );
console.log( v );
Usage
#include "stdlib/stats/base/dmskmin.h"
stdlib_strided_dmskmin( N, *X, strideX, *Mask, strideMask )
Computes the minimum value of a double-precision floating-point strided array according to a mask.
#include <stdint.h>
const double x[] = { 1.0, -2.0, 2.0 };
const uint8_t mask[] = { 0, 1, 0 };
double v = stdlib_strided_dmskmin( 3, x, 1, mask, 1 );
// returns 1.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - Mask:
[in] uint8_t*
mask array. If aMask
array element is0
, the corresponding element inX
is considered valid and included in computation. If aMask
array element is1
, the corresponding element inX
is considered invalid/missing and excluded from computation. - strideMask:
[in] CBLAS_INT
stride length forMask
.
double stdlib_strided_dmskmin( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const uint8_t *Mask, const CBLAS_INT strideMask );
stdlib_strided_dmskmin_ndarray( N, *X, strideX, offsetX, *Mask, strideMask, offsetMask )
Computes the minimum value of a double-precision floating-point strided array according to a mask and using alternative indexing semantics.
#include <stdint.h>
const double x[] = { 1.0, -2.0, 2.0 };
const uint8_t mask[] = { 0, 1, 0 };
double v = stdlib_strided_dmskmin( 3, x, 1, 0, mask, 1, 0 );
// returns 1.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - Mask:
[in] uint8_t*
mask array. If aMask
array element is0
, the corresponding element inX
is considered valid and included in computation. If aMask
array element is1
, the corresponding element inX
is considered invalid/missing and excluded from computation. - strideMask:
[in] CBLAS_INT
stride length forMask
. - offsetMask:
[in] CBLAS_INT
starting index forMask
.
double stdlib_strided_dmskmin_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const uint8_t *Mask, const CBLAS_INT strideMask, const CBLAS_INT offsetMask );
Examples
#include "stdlib/stats/base/dmskmin.h"
#include <stdint.h>
#include <stdio.h>
int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
// Create a mask array:
const uint8_t mask[] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 };
// Specify the number of elements:
const int N = 5;
// Specify the stride lengths:
const int strideX = 2;
const int strideMask = 2;
// Compute the minimum value:
double v = stdlib_strided_dmskmin( N, x, strideX, mask, strideMask );
// Print the result:
printf( "min: %lf\n", v );
}