Mean
Weibull distribution expected value.
The expected value for a Weibull random variable is
where k > 0
is the shape parameter λ > 0
is the scale parameter.
Usage
var mean = require( '@stdlib/stats/base/dists/weibull/mean' );
mean( k, lambda )
Returns the expected value of a Weibull distribution with parameters k
(shape parameter) and lambda
(scale parameter).
var v = mean( 1.0, 1.0 );
// returns 1.0
v = mean( 4.0, 12.0 );
// returns ~10.877
v = mean( 8.0, 2.0 );
// returns ~1.883
If provided NaN
as any argument, the function returns NaN
.
var v = mean( NaN, 2.0 );
// returns NaN
v = mean( 2.0, NaN );
// returns NaN
If provided k <= 0
, the function returns NaN
.
var v = mean( 0.0, 1.0 );
// returns NaN
v = mean( -1.0, 1.0 );
// returns NaN
If provided lambda <= 0
, the function returns NaN
.
var v = mean( 1.0, 0.0 );
// returns NaN
v = mean( 1.0, -1.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var mean = require( '@stdlib/stats/base/dists/weibull/mean' );
var lambda;
var k;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
k = ( randu()*10.0 ) + EPS;
lambda = ( randu()*10.0 ) + EPS;
v = mean( k, lambda );
console.log( 'k: %d, λ: %d, E(X;k,λ): %d', k.toFixed( 4 ), lambda.toFixed( 4 ), v.toFixed( 4 ) );
}
C APIs
Usage
#include "stdlib/stats/base/dists/weibull/mean.h"
stdlib_base_dists_weibull_mean( k, lambda )
Returns the expected value of a Weibull distribution with parameters k
(shape parameter) and lambda
(scale parameter).
double out = stdlib_base_dists_weibull_mean( 4.0, 12.0 );
// returns ~10.877
The function accepts the following arguments:
- k:
[in] double
shape parameter. - lambda:
[in] double
scale parameter.
double stdlib_base_dists_weibull_mean( const double k, const double lambda );
Examples
#include "stdlib/stats/base/dists/weibull/mean.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double lambda;
double k;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
k = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 10.0 );
lambda = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 10.0 );
y = stdlib_base_dists_weibull_mean( k, lambda );
printf( "k: %lf, λ: %lf, E(X;k,λ): %lf\n", k, lambda, y );
}
}