Logarithm of Probability Density Function
Weibull distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a Weibull random variable is
where lambda > 0
and k > 0
are the respective scale and shape parameters of the distribution.
Usage
var logpdf = require( '@stdlib/stats/base/dists/weibull/logpdf' );
logpdf( x, k, lambda )
Evaluates the logarithm of the probability density function (PDF) for a Weibull distribution with shape parameter k
and scale parameter lambda
.
var y = logpdf( 2.0, 1.0, 0.5 );
// returns ~-3.307
y = logpdf( -1.0, 4.0, 2.0 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 1.0, NaN );
// returns NaN
If provided k <= 0
, the function returns NaN
.
var y = logpdf( 2.0, 0.0, 1.0 );
// returns NaN
y = logpdf( 2.0, -1.0, 1.0 );
// returns NaN
If provided lambda <= 0
, the function returns NaN
.
var y = logpdf( 2.0, 1.0, 0.0 );
// returns NaN
y = logpdf( 2.0, 1.0, -1.0 );
// returns NaN
logpdf.factory( k, lambda )
Returns a function
for evaluating the logarithm of the PDF for a Weibull distribution with shape parameter k
and scale parameter lambda
.
var mylogpdf = logpdf.factory( 2.0, 10.0 );
var y = mylogpdf( 12.0 );
// returns ~-2.867
y = mylogpdf( 5.0 );
// returns ~-2.553
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/weibull/logpdf' );
var lambda;
var k;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
lambda = randu() * 10.0;
k = randu() * 10.0;
y = logpdf( x, k, lambda );
console.log( 'x: %d, k: %d, λ: %d, ln(f(x;k,λ)): %d', x.toFixed( 4 ), k.toFixed( 4 ), lambda.toFixed( 4 ), y.toFixed( 4 ) );
}