Logarithm of Probability Mass Function
Geometric distribution logarithm of probability mass function (PMF).
The probability mass function (PMF) for a geometric random variable is defined as
where 0 <= p <= 1
is the success probability. The random variable X
denotes the number of failures until the first success in a sequence of independent Bernoulli trials.
Usage
var logpmf = require( '@stdlib/stats/base/dists/geometric/logpmf' );
logpmf( x, p )
Evaluates the logarithm of the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1
.
var y = logpmf( 4.0, 0.3 );
// returns ~-2.631
y = logpmf( 2.0, 0.7 );
// returns ~-2.765
y = logpmf( -1.0, 0.5 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logpmf( NaN, 0.0 );
// returns NaN
y = logpmf( 0.0, NaN );
// returns NaN
If provided a success probability p
outside of the interval [0,1]
, the function returns NaN
.
var y = logpmf( 2.0, -1.0 );
// returns NaN
y = logpmf( 2.0, 1.5 );
// returns NaN
logpmf.factory( p )
Returns a function for evaluating the logarithm of the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1
.
var mylogpmf = logpmf.factory( 0.5 );
var y = mylogpmf( 3.0 );
// returns ~-2.773
y = mylogpmf( 1.0 );
// returns ~-1.386
Notes
- In virtually all cases, using the
logpmf
orlogcdf
functions is preferable to manually computing the logarithm of thepmf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var logpmf = require( '@stdlib/stats/base/dists/geometric/logpmf' );
var p;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = round( randu() * 5.0 );
p = randu();
y = logpmf( x, p );
console.log( 'x: %d, p: %d, ln( P( X = x; p ) ): %d', x, p.toFixed( 4 ), y.toFixed( 4 ) );
}