Mean
Beta distribution expected value.
The expected value for a beta random variable is
where α > 0
is the first shape parameter and β > 0
is the second shape parameter.
Usage
var mean = require( '@stdlib/stats/base/dists/beta/mean' );
mean( alpha, beta )
Returns the expected value of a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
var v = mean( 1.0, 1.0 );
// returns 0.5
v = mean( 4.0, 12.0 );
// returns 0.25
v = mean( 8.0, 2.0 );
// returns 0.8
If provided NaN
as any argument, the function returns NaN
.
var v = mean( NaN, 2.0 );
// returns NaN
v = mean( 2.0, NaN );
// returns NaN
If provided alpha <= 0
, the function returns NaN
.
var v = mean( 0.0, 1.0 );
// returns NaN
v = mean( -1.0, 1.0 );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var v = mean( 1.0, 0.0 );
// returns NaN
v = mean( 1.0, -1.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var mean = require( '@stdlib/stats/base/dists/beta/mean' );
var alpha;
var beta;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
alpha = ( randu()*10.0 ) + EPS;
beta = ( randu()*10.0 ) + EPS;
v = mean( alpha, beta );
console.log( 'α: %d, β: %d, E(X;α,β): %d', alpha.toFixed( 4 ), beta.toFixed( 4 ), v.toFixed( 4 ) );
}
C APIs
Usage
#include "stdlib/stats/base/dists/beta/mean.h"
stdlib_base_dists_beta_mean( alpha, beta )
Returns the expected value of a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
double out = stdlib_base_dists_beta_mean( 1.0, 1.0 );
// returns 0.5
The function accepts the following arguments:
- alpha:
[in] double
first shape parameter. - beta:
[in] double
second shape parameter.
double stdlib_base_dists_beta_mean( const double a, const double b );
Examples
#include "stdlib/stats/base/dists/beta/mean.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) ) + STDLIB_CONSTANT_FLOAT64_EPS;
}
int main( void ) {
double alpha;
double beta;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
alpha = random_uniform( 0.0, 10.0 );
beta = random_uniform( 0.0, 10.0 );
y = stdlib_base_dists_beta_mean( alpha, beta );
printf( "alpha: %lf, beta: %lf, E(X;α,β): %lf\n", alpha, beta, y );
}
}