Logarithm of Probability Density Function
Beta distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a beta random variable is
where alpha > 0
is the first shape parameter and beta > 0
is the second shape parameter.
Usage
var logpdf = require( '@stdlib/stats/base/dists/beta/logpdf' );
logpdf( x, alpha, beta )
Evaluates the natural logarithm of the probability density function (PDF) for a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
var y = logpdf( 0.5, 0.5, 1.0 );
// returns ~-0.347
y = logpdf( 0.1, 1.0, 1.0 );
// returns 0.0
y = logpdf( 0.8, 4.0, 2.0 );
// returns ~0.717
If provided an input value x
outside the support [0,1]
, the function returns -Infinity
.
var y = logpdf( -0.1, 1.0, 1.0 );
// returns -Infinity
y = logpdf( 1.1, 1.0, 1.0 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 1.0, NaN );
// returns NaN
If provided alpha <= 0
, the function returns NaN
.
var y = logpdf( 0.5, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.5, -1.0, 1.0 );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var y = logpdf( 0.5, 1.0, 0.0 );
// returns NaN
y = logpdf( 0.5, 1.0, -1.0 );
// returns NaN
logpdf.factory( alpha, beta )
Returns a function
for evaluating the natural logarithm of the PDF for a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
var mylogPDF = logpdf.factory( 0.5, 0.5 );
var y = mylogPDF( 0.8 );
// returns ~-0.228
y = mylogPDF( 0.3 );
// returns ~-0.364
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var logpdf = require( '@stdlib/stats/base/dists/beta/logpdf' );
var alpha;
var beta;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu();
alpha = ( randu()*5.0 ) + EPS;
beta = ( randu()*5.0 ) + EPS;
y = logpdf( x, alpha, beta );
console.log( 'x: %d, α: %d, β: %d, ln(f(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}