Logarithm of Probability Density Function

Beta distribution logarithm of probability density function (PDF).

The probability density function (PDF) for a beta random variable is

f left-parenthesis x semicolon alpha comma beta right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column StartFraction normal upper Gamma left-parenthesis alpha plus beta right-parenthesis Over normal upper Gamma left-parenthesis alpha right-parenthesis plus normal upper Gamma left-parenthesis beta right-parenthesis EndFraction x Superscript alpha minus 1 Baseline left-parenthesis 1 minus x right-parenthesis Superscript beta minus 1 Baseline 2nd Column for x element-of left-parenthesis 0 comma 1 right-parenthesis 2nd Row 1st Column 0 2nd Column otherwise EndLayout

where alpha > 0 is the first shape parameter and beta > 0 is the second shape parameter.

Usage

var logpdf = require( '@stdlib/stats/base/dists/beta/logpdf' );

logpdf( x, alpha, beta )

Evaluates the natural logarithm of the probability density function (PDF) for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

var y = logpdf( 0.5, 0.5, 1.0 );
// returns ~-0.347

y = logpdf( 0.1, 1.0, 1.0 );
// returns 0.0

y = logpdf( 0.8, 4.0, 2.0 );
// returns ~0.717

If provided an input value x outside the support [0,1], the function returns -Infinity.

var y = logpdf( -0.1, 1.0, 1.0 );
// returns -Infinity

y = logpdf( 1.1, 1.0, 1.0 );
// returns -Infinity

If provided NaN as any argument, the function returns NaN.

var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN

y = logpdf( 0.0, NaN, 1.0 );
// returns NaN

y = logpdf( 0.0, 1.0, NaN );
// returns NaN

If provided alpha <= 0, the function returns NaN.

var y = logpdf( 0.5, 0.0, 1.0 );
// returns NaN

y = logpdf( 0.5, -1.0, 1.0 );
// returns NaN

If provided beta <= 0, the function returns NaN.

var y = logpdf( 0.5, 1.0, 0.0 );
// returns NaN

y = logpdf( 0.5, 1.0, -1.0 );
// returns NaN

logpdf.factory( alpha, beta )

Returns a function for evaluating the natural logarithm of the PDF for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

var mylogPDF = logpdf.factory( 0.5, 0.5 );

var y = mylogPDF( 0.8 );
// returns ~-0.228

y = mylogPDF( 0.3 );
// returns ~-0.364

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var logpdf = require( '@stdlib/stats/base/dists/beta/logpdf' );

var alpha;
var beta;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu();
    alpha = ( randu()*5.0 ) + EPS;
    beta = ( randu()*5.0 ) + EPS;
    y = logpdf( x, alpha, beta );
    console.log( 'x: %d, α: %d, β: %d, ln(f(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}
Did you find this page helpful?