dcuminabs

Calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.

Usage

var dcuminabs = require( '@stdlib/stats/base/dcuminabs' );

dcuminabs( N, x, strideX, y, strideY )

Computes the cumulative minimum absolute value of double-precision floating-point strided array elements.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcuminabs( x.length, x, 1, y, 1 );
// y => <Float64Array>[ 1.0, 1.0, 1.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: stride length for x.
  • y: output Float64Array.
  • strideY: stride length for y.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative minimum absolute value of every other element in x,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( x.length );

var v = dcuminabs( 4, x, 2, y, 1 );
// y => <Float64Array>[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

dcuminabs( 4, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 2.0, 2.0, 1.0, 0.0 ]

dcuminabs.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative minimum absolute value of double-precision floating-point strided array elements using alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcuminabs.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, 1.0, 1.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative minimum absolute value of every other element in x starting from the second element and to store in the last N elements of y starting from the last element

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float64Array( x.length );

dcuminabs.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.

Examples

var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Float64Array = require( '@stdlib/array/float64' );
var dcuminabs = require( '@stdlib/stats/base/dcuminabs' );

var x = discreteUniform( 10, -50, 50, {
    'dtype': 'float64'
});
console.log( x );

var y = new Float64Array( x.length );
console.log( y );

dcuminabs( x.length, x, 1, y, -1 );
console.log( y );

C APIs

Usage

#include "stdlib/stats/base/dcuminabs.h"

stdlib_strided_dcuminabs( N, *X, strideX, *Y, strideY )

Computes the cumulative minumum absolute value of double-precision floating-point strided array elements.

const double x[] = { 1.0, 2.0, -3.0, 4.0, -5.0, 6.0, 7.0, 8.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

stdlib_strided_dcuminabs( 4, x, 2, y, -2 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • Y: [out] double* output array.
  • strideY: [in] CBLAS_INT stride length for Y.
void stdlib_strided_dcuminabs( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, double *Y, const CBLAS_INT strideY );

stdlib_strided_dcuminabs_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY )

Computes the cumulative minumum absolute value of double-precision floating-point strided array elements using alternative indexing semantics.

const double x[] = { 1.0, 2.0, -3.0, 4.0, -5.0, 6.0, 7.0, 8.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

stdlib_strided_dcuminabs_ndarray( 4, x, 2, 0, y, -2, 0 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • offsetX: [in] CBLAS_INT starting index for X.
  • Y: [out] double* output array.
  • strideY: [in] CBLAS_INT stride length for Y.
  • offsetY: [in] CBLAS_INT starting index for Y.
void stdlib_strided_dcuminabs_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, double *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );

Examples

#include "stdlib/stats/base/dcuminabs.h"
#include <stdio.h>

int main( void ) {
    // Create strided arrays:
    const double x[] = { 1.0, 2.0, -3.0, 4.0, -5.0, 6.0, 7.0, 8.0 };
    double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

    // Specify the number of elements:
    const int N = 4;

    // Specify stride lengths:
    const int strideX = 2;
    const int strideY = -2;

    // Compute the cumulative minumum absolute value:
    stdlib_strided_dcuminabs( N, x, strideX, y, strideY );

    // Print the result:
    for ( int i = 0; i < 8; i++ ) {
        printf( "y[ %d ] = %lf\n", i, y[ i ] );
    }
}
Did you find this page helpful?