dcumaxabs
Calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.
Usage
var dcumaxabs = require( '@stdlib/stats/base/dcumaxabs' );
dcumaxabs( N, x, strideX, y, strideY )
Computes the cumulative maximum absolute value of double-precision floating-point strided array elements.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );
dcumaxabs( x.length, x, 1, y, 1 );
// y => <Float64Array>[ 1.0, 2.0, 2.0 ]
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: stride length for
x
. - y: output
Float64Array
. - strideY: stride length for
y
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative maximum absolute value of every other element in x
,
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( x.length );
var v = dcumaxabs( 4, x, 2, y, 1 );
// y => <Float64Array>[ 1.0, 2.0, 2.0, 4.0, 0.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
dcumaxabs( 4, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 4.0, 4.0, 4.0, 0.0 ]
dcumaxabs.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Computes the cumulative maximum absolute value of double-precision floating-point strided array elements using alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );
dcumaxabs.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, 2.0, 2.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative maximum absolute value of every other element in x
starting from the second element and to store in the last N
elements of y
starting from the last element
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float64Array( x.length );
dcumaxabs.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 4.0, 2.0, 2.0, 1.0 ]
Notes
- If
N <= 0
, both functions returny
unchanged.
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Float64Array = require( '@stdlib/array/float64' );
var dcumaxabs = require( '@stdlib/stats/base/dcumaxabs' );
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
console.log( x );
var y = new Float64Array( x.length );
console.log( y );
dcumaxabs( x.length, x, 1, y, -1 );
console.log( y );
C APIs
Usage
#include "stdlib/stats/base/dcumaxabs.h"
stdlib_strided_dcumaxabs( N, *X, strideX, *Y, strideY )
Computes the cumulative maximum absolute value of double-precision floating-point strided array elements.
const double x[] = { 1.0, 2.0, -3.0, 4.0, -5.0, 6.0, 7.0, 8.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
stdlib_strided_dcumaxabs( 4, x, 2, y, -2 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - Y:
[out] double*
output array. - strideY:
[in] CBLAS_INT
stride length forY
.
void stdlib_strided_dcumaxabs( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, double *Y, const CBLAS_INT strideY );
stdlib_strided_dcumaxabs_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY )
Computes the cumulative maximum absolute value of double-precision floating-point strided array elements using alternative indexing semantics.
const double x[] = { 1.0, 2.0, -3.0, 4.0, -5.0, 6.0, 7.0, 8.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
stdlib_strided_dcumaxabs_ndarray( 4, x, 2, 0, y, -2, 0 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - Y:
[out] double*
output array. - strideY:
[in] CBLAS_INT
stride length forY
. - offsetY:
[in] CBLAS_INT
starting index forY
.
void stdlib_strided_dcumaxabs_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, double *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );
Examples
#include "stdlib/stats/base/dcumaxabs.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
const double x[] = { 1.0, 2.0, -3.0, 4.0, -5.0, 6.0, 7.0, 8.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 2;
const int strideY = -2;
// Compute the cumulative maximum absolute value:
stdlib_strided_dcumaxabs( N, x, strideX, y, strideY );
// Print the result:
for ( int i = 0; i < 8; i++ ) {
printf( "y[ %d ] = %lf\n", i, y[ i ] );
}
}