ellipe

Compute the complete elliptic integral of the second kind.

The complete elliptic integral of the second kind is defined as

upper E left-parenthesis m right-parenthesis equals integral Subscript 0 Superscript pi slash 2 Baseline StartRoot 1 minus m left-parenthesis sine theta right-parenthesis squared EndRoot d theta

where the parameter m is related to the modulus k by m = k^2.

Usage

var ellipe = require( '@stdlib/math/base/special/ellipe' );

ellipe( m )

Computes the complete elliptic integral of the second kind.

var v = ellipe( 0.5 );
// returns ~1.351

v = ellipe( -1.0 );
// returns ~1.910

v = ellipe( 2.0 );
// returns NaN

v = ellipe( Infinity );
// returns NaN

v = ellipe( -Infinity );
// returns NaN

v = ellipe( NaN );
// returns NaN

Notes

  • This function is valid for -∞ < m <= 1.

Examples

var randu = require( '@stdlib/random/base/randu' );
var ellipe = require( '@stdlib/math/base/special/ellipe' );

var m;
var i;

for ( i = 0; i < 100; i++ ) {
    m = -1.0 + ( randu() * 2.0 );
    console.log( 'ellipe(%d) = %d', m, ellipe( m ) );
}

C APIs

Usage

#include "stdlib/math/base/special/ellipe.h"

stdlib_base_ellipe( m )

Computes the complete elliptic integral of the second kind.

double out = stdlib_base_ellipe( 0.5 );
// returns ~1.351

out = stdlib_base_ellipe( -1.0 );
// returns ~1.910

The function accepts the following arguments:

  • x: [in] double input value.
double stdlib_base_ellipe( const double m );

Examples

#include "stdlib/math/base/special/ellipe.h"
#include <stdlib.h>
#include <stdio.h>

int main( void ) {
    double m;
    double v;
    int i;

    for ( i = 0; i < 100; i++ ) {
        m = -1.0 + ( ( (double)rand() / (double)RAND_MAX ) * 2.0 );
        v = stdlib_base_ellipe( m );
        printf( "ellipe(%lf) = %lf\n", m, v );
    }
}

References

  • Fukushima, Toshio. 2009. "Fast computation of complete elliptic integrals and Jacobian elliptic functions." Celestial Mechanics and Dynamical Astronomy 105 (4): 305. doi:10.1007/s10569-009-9228-z.
  • Fukushima, Toshio. 2015. "Precise and fast computation of complete elliptic integrals by piecewise minimax rational function approximation." Journal of Computational and Applied Mathematics 282 (July): 71–76. doi:10.1016/j.cam.2014.12.038.
Did you find this page helpful?