Dirichlet Eta Function
Dirichlet eta function.
The Dirichlet eta function is defined by the Dirichlet series
where s
is a complex variable equal to σ + ti
. The series is convergent for all complex numbers having a real part greater than 0
.
Note that the Dirichlet eta function is also known as the alternating zeta function and denoted ζ*(s)
. The series is an alternating sum corresponding to the Dirichlet series expansion of the Riemann zeta function. Accordingly, the following relation holds:
where ζ(s)
is the Riemann zeta function.
Usage
var eta = require( '@stdlib/math/base/special/dirichlet-eta' );
eta( s )
Evaluates the Dirichlet eta function as a function of a real variable s
.
var v = eta( 0.0 ); // Abel sum of 1-1+1-1+...
// returns 0.5
v = eta( -1.0 ); // Abel sum of 1-2+3-4+...
// returns 0.25
v = eta( 1.0 ); // alternating harmonic series => ln(2)
// returns 0.6931471805599453
v = eta( 3.14 );
// returns ~0.9096
v = eta( NaN );
// returns NaN
Examples
var linspace = require( '@stdlib/array/base/linspace' );
var eta = require( '@stdlib/math/base/special/dirichlet-eta' );
var s = linspace( -50.0, 50.0, 200 );
var i;
for ( i = 0; i < s.length; i++ ) {
console.log( 's: %d, η(s): %d', s[ i ], eta( s[ i ] ) );
}