ellipj
Compute the Jacobi elliptic functions sn, cn, and dn.
The Jacobi elliptic functions may be defined as the inverse of the incomplete elliptic integral of the first kind. Accordingly, they compute the value φ
which satisfies the equation
where the parameter m
is related to the modulus k
by m = k^2
.
Usage
var ellipj = require( '@stdlib/math/base/special/ellipj' );
ellipj( u, m )
Computes the Jacobi elliptic functions functions sn
, cn
, and dn
, and the Jacobi amplitude am
.
var v = ellipj( 0.3, 0.5 );
// returns [ ~0.293, ~0.956, ~0.978, ~0.298 ]
v = ellipj( 0.0, 0.0 );
// returns [ ~0.0, ~1.0, ~1.0, ~0.0 ]
v = ellipj( Infinity, 1.0 );
// returns [ ~1.0, ~0.0, ~0.0, ~1.571 ]
v = ellipj( 0.0, -2.0 );
// returns [ ~0.0, ~1.0, ~1.0, NaN ]
v = ellipj( NaN, NaN );
// returns [ NaN, NaN, NaN, NaN ]
ellipj.assign( u, m, out, stride, offset )
Computes the Jacobi elliptic functions sn
, cn
, dn
, and Jacobi amplitude am
and assigns results to a provided output array.
var Float64Array = require( '@stdlib/array/float64' );
var out = new Float64Array( 4 );
var v = ellipj.assign( 0.0, 0.0, out, 1, 0 );
// returns <Float64Array>[ ~0.0, ~1.0, ~1.0, ~0.0 ]
var bool = ( v === out );
// returns true
ellipj.sn( u, m )
Computes the Jacobi elliptic function sn
of value u
with modulus m
.
var v = ellipj.sn( 0.3, 0.5 );
// returns ~0.293
ellipj.cn( u, m )
Computes the Jacobi elliptic function cn
of value u
with modulus m
.
var v = ellipj.cn( 0.3, 0.5 );
// returns ~0.956
ellipj.dn( u, m )
Computes the Jacobi elliptic function dn
of value u
with modulus m
.
var v = ellipj.dn( 0.3, 0.5 );
// returns ~0.978
ellipj.am( u, m )
Computes the Jacobi amplitude am
of value u
with modulus m
.
var v = ellipj.am( 0.3, 0.5 );
// returns ~0.298
v = ellipj.am( 0.3, 2.0 );
// returns NaN
Although sn
, cn
, and dn
may be computed for -∞ < m < ∞
, the domain of am
is 0 ≤ m ≤ 1
. For m < 0
or m > 1
, the function returns NaN
.
Notes
- Functions
sn
,cn
, anddn
are valid for-∞ < m < ∞
. Values form < 0
orm > 1
are computed in terms of Jacobi elliptic functions with0 < m < 1
via the transformations outlined in Equations 16.13 and 16.15 from The Handbook of Mathematical Functions (Abramowitz and Stegun). - If more than one of
sn
,cn
,dn
, oram
is to be computed, preferring usingellipj
to compute all four values simultaneously.
Examples
var linspace = require( '@stdlib/array/base/linspace' );
var ellipk = require( '@stdlib/math/base/special/ellipk' );
var ellipj = require( '@stdlib/math/base/special/ellipj' );
var m = 0.7;
var u = linspace( 0.0, ellipk( m ), 100 );
var out;
var i;
for ( i = 0; i < 100; i++ ) {
out = ellipj( u[ i ], m );
console.log( 'sn(%d, %d) = %d', u[ i ], m, out[ 0 ] );
console.log( 'cn(%d, %d) = %d', u[ i ], m, out[ 1 ] );
console.log( 'dn(%d, %d) = %d', u[ i ], m, out[ 2 ] );
console.log( 'am(%d, %d) = %d', u[ i ], m, out[ 3 ] );
}
References
- Fukushima, Toshio. 2009. "Fast computation of complete elliptic integrals and Jacobian elliptic functions." Celestial Mechanics and Dynamical Astronomy 105 (4): 305. doi:10.1007/s10569-009-9228-z.
- Fukushima, Toshio. 2015. "Precise and fast computation of complete elliptic integrals by piecewise minimax rational function approximation." Journal of Computational and Applied Mathematics 282 (July): 71–76. doi:10.1016/j.cam.2014.12.038.