zfill
Fill a double-precision complex floating-point strided array with a specified scalar constant.
Usage
var zfill = require( '@stdlib/blas/ext/base/zfill' );
zfill( N, alpha, x, strideX )
Fills a double-precision complex floating-point strided array x
with a specified scalar constant alpha
.
var Float64Array = require( '@stdlib/array/float64' );
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var arr = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var x = new Complex128Array( arr );
var alpha = new Complex128( 10.0, 10.0 );
zfill( x.length, alpha, x, 1 );
var y = x.get( 0 );
// returns <Complex128>
var re = real( y );
// returns 10.0
var im = imag( y );
// returns 10.0
The function has the following parameters:
- N: number of indexed elements.
- alpha: scalar constant.
- x: input
Complex128Array
. - strideX: index increment.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to fill every other element
var Float64Array = require( '@stdlib/array/float64' );
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var arr = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var x = new Complex128Array( arr );
var alpha = new Complex128( 10.0, 10.0 );
zfill( 2, alpha, x, 2 );
var y = x.get( 0 );
// returns <Complex128>
var re = real( y );
// returns 10.0
var im = imag( y );
// returns 10.0
y = x.get( 1 );
// returns <Complex128>
re = real( y );
// returns 3.0
im = imag( y );
// returns 4.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
// Create the underlying floating-point array:
var arr = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
// Initial array:
var x0 = new Complex128Array( arr );
// Create an offset view:
var x1 = new Complex128Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Define a scalar constant:
var alpha = new Complex128( 10.0, 10.0 );
// Fill every other element:
zfill( 2, alpha, x1, 2 );
var y = x0.get( 0 );
// returns <Complex128>
var re = real( y );
// returns 1.0
var im = imag( y );
// returns 2.0
y = x0.get( 1 );
// returns <Complex128>
re = real( y );
// returns 10.0
im = imag( y );
// returns 10.0
zfill.ndarray( N, alpha, x, strideX, offsetX )
Fills a double-precision complex floating-point strided array x
with a specified scalar constant alpha
using alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var arr = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var x = new Complex128Array( arr );
var alpha = new Complex128( 10.0, 10.0 );
zfill.ndarray( x.length, alpha, x, 1, 0 );
var y = x.get( 0 );
// returns <Complex128>
var re = real( y );
// returns 10.0
var im = imag( y );
// returns 10.0
The function has the following additional parameters:
- offsetX: starting index.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to access only the last two elements of the strided array
var Float64Array = require( '@stdlib/array/float64' );
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var arr = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x = new Complex128Array( arr );
var alpha = new Complex128( 10.0, 10.0 );
zfill.ndarray( 2, alpha, x, 1, x.length-2 );
var y = x.get( 0 );
// returns <Complex128>
var re = real( y );
// returns 1.0
var im = imag( y );
// returns 2.0
y = x.get( 1 );
// returns <Complex128>
re = real( y );
// returns 10.0
im = imag( y );
// returns 10.0
y = x.get( 2 );
// returns <Complex128>
re = real( y );
// returns 10.0
im = imag( y );
// returns 10.0
Notes
- If
N <= 0
, both functions return the strided array unchanged.
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var Complex128Array = require( '@stdlib/array/complex128' );
var zfill = require( '@stdlib/blas/ext/base/zfill' );
var xbuf = discreteUniform( 20, -100, 100, {
'dtype': 'float64'
});
var x = new Complex128Array( xbuf.buffer );
var alpha = new Complex128( 10.0, 10.0 );
zfill( x.length, alpha, x, 1 );
console.log( x.get( 0 ).toString() );
Usage
#include "stdlib/blas/ext/base/zfill.h"
stdlib_strided_zfill( N, alpha, *X, strideX )
Fills a double-precision complex floating-point strided array X
with a specified scalar constant alpha
.
double x[] = { 1.0, 2.0, 3.0, 4.0 };
const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );
stdlib_strided_zfill( 2, alpha, (stdlib_complex128_t *)x, 1 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - alpha:
[in] stdlib_complex128_t
scalar constant. - X:
[out] stdlib_complex128_t*
input array. - strideX:
[in] CBLAS_INT
index increment forX
.
void stdlib_strided_zfill( const CBLAS_INT N, const stdlib_complex128_t alpha, stdlib_complex128_t *X, const CBLAS_INT strideX );
stdlib_strided_zfill_ndarray( N, alpha, *X, strideX, offsetX )
Fills a double-precision complex floating-point strided array X
with a specified scalar constant alpha
using alternative indexing semantics.
double x[] = { 1.0, 2.0, 3.0, 4.0 };
const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );
stdlib_strided_zfill_ndarray( 4, alpha, (stdlib_complex128_t *x), 1, 0 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - alpha:
[in] stdlib_complex128_t
scalar constant. - X:
[out] stdlib_complex128_t*
input array. - strideX:
[in] CBLAS_INT
index increment forX
. - offsetX:
[in] CBLAS_INT
starting index forX
.
void stdlib_strided_zfill_ndarray( const CBLAS_INT N, const stdlib_complex128_t alpha, stdlib_complex128_t *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
Examples
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/blas/ext/base/zfill.h"
#include <stdio.h>
int main() {
// Create a strided array of interleaved real and imaginary components:
double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
// Create a scalar constant:
const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );
// Specify the number of elements:
const int N = 4;
// Specify a stride:
const int strideX = 1;
// Fill the array:
stdlib_strided_zfill( N, alpha, (stdlib_complex128_t *)x, strideX );
// Print the result:
for ( int i = 0; i < 8; i++ ) {
printf( "x[ %i ] = %lf\n", i, x[ i ] );
}
}