dsumkbn
Calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
Usage
var dsumkbn = require( '@stdlib/blas/ext/base/dsumkbn' );
dsumkbn( N, x, stride )
Computes the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;
var v = dsumkbn( N, x, 1 );
// returns 1.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - stride: index increment for
x
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element in the strided array,
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var v = dsumkbn( 4, x, 2 );
// returns 5.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dsumkbn( 4, x1, 2 );
// returns 5.0
dsumkbn.ndarray( N, x, stride, offset )
Computes the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var v = dsumkbn.ndarray( 3, x, 1, 0 );
// returns 1.0
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in the strided array starting from the second value
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = dsumkbn.ndarray( 4, x, 2, 1 );
// returns 5.0
Notes
- If
N <= 0
, both functions return0.0
.
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array/filled-by' );
var dsumkbn = require( '@stdlib/blas/ext/base/dsumkbn' );
var x = filledarrayBy( 10, 'float64', discreteUniform( 0, 100 ) );
console.log( x );
var v = dsumkbn( x.length, x, 1 );
console.log( v );
References
- Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.