dapxsumkbn

Add a scalar constant to each double-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.

Usage

var dapxsumkbn = require( '@stdlib/blas/ext/base/dapxsumkbn' );

dapxsumkbn( N, alpha, x, strideX )

Adds a scalar constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dapxsumkbn( 3, 5.0, x, 1 );
// returns 16.0

The function has the following parameters:

  • N: number of indexed elements.
  • alpha: scalar constant.
  • x: input Float64Array.
  • strideX: index increment for x.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to access every other element in x,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );

var v = dapxsumkbn( 4, 5.0, x, 2 );
// returns 25.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dapxsumkbn( 4, 5.0, x1, 2 );
// returns 25.0

dapxsumkbn.ndarray( N, alpha, x, strideX, offsetX )

Adds a scalar constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dapxsumkbn.ndarray( 3, 5.0, x, 1, 0 );
// returns 16.0

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to access every other value in x starting from the second value

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dapxsumkbn.ndarray( 4, 5.0, x, 2, 1 );
// returns 25.0

Notes

  • If N <= 0, both functions return 0.0.

Examples

var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dapxsumkbn = require( '@stdlib/blas/ext/base/dapxsumkbn' );

var x = discreteUniform( 10, -100, 100, {
    'dtype': 'float64'
});
console.log( x );

var v = dapxsumkbn( x.length, 5.0, x, 1 );
console.log( v );

C APIs

Usage

#include "stdlib/blas/ext/base/dapxsumkbn.h"

stdlib_strided_dapxsumkbn( N, alpha, *X, strideX )

Adds a scalar constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm.

const double x[] = { 1.0, 2.0, 3.0, 4.0 };

double v = stdlib_strided_dapxsumkbn( 4, 5.0, x, 1 );
// returns 30.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • alpha: [in] double scalar constant.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT index increment for X.
double stdlib_strided_dapxsumkbn( const CBLAS_INT N, const double alpha, const double *X, const CBLAS_INT strideX );

stdlib_strided_dapxsumkbn_ndarray( N, alpha, *X, strideX, offsetX )

Adds a scalar constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm and alternative indexing semantics.

const double x[] = { 1.0, 2.0, 3.0, 4.0 };

double v = stdlib_strided_dapxsumkbn_ndarray( 4, 5.0, x, 1, 0 );
// returns 30.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • alpha: [in] double scalar constant.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT index increment for X.
  • offsetX: [in] CBLAS_INT starting index for X.
double stdlib_strided_dapxsumkbn_ndarray( const CBLAS_INT N, const double alpha, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );

Examples

#include "stdlib/blas/ext/base/dapxsumkbn.h"
#include <stdio.h>

int main( void ) {
    // Create a strided array:
    const double x[] = { 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0 };

    // Specify the number of indexed elements:
    const int N = 8;

    // Specify a stride:
    const int strideX = 1;

    // Compute the sum:
    double v = stdlib_strided_dapxsumkbn( N, 5.0, x, strideX );

    // Print the result:
    printf( "Sum: %lf\n", sum );
}

References

  • Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.
Did you find this page helpful?