sgemv
Perform one of the matrix-vector operations
y = α*A*x + β*y
ory = α*A^T*x + β*y
.
Usage
var sgemv = require( '@stdlib/blas/base/sgemv' );
sgemv( ord, trans, M, N, α, A, LDA, x, sx, β, y, sy )
Performs one of the matrix-vector operations y = α*A*x + β*y
or y = α*A^T*x + β*y
, where α
and β
are scalars, x
and y
are vectors, and A
is an M
by N
matrix.
var Float32Array = require( '@stdlib/array/float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x = new Float32Array( [ 1.0, 1.0, 1.0 ] );
var y = new Float32Array( [ 1.0, 1.0 ] );
sgemv( 'row-major', 'no-transpose', 2, 3, 1.0, A, 3, x, 1, 1.0, y, 1 );
// y => <Float32Array>[ 7.0, 16.0 ]
The function has the following parameters:
- ord: storage layout.
- trans: specifies whether
A
should be transposed, conjugate-transposed, or not transposed. - M: number of rows in the matrix
A
. - N: number of columns in the matrix
A
. - α: scalar constant.
- A: input matrix stored in linear memory as a
Float32Array
. - lda: stride of the first dimension of
A
(leading dimension ofA
). - x: input
Float32Array
. - sx: index increment for
x
. - β: scalar constant.
- y: output
Float32Array
. - sy: index increment for
y
.
The stride parameters determine how operations are performed. For example, to iterate over every other element in x
and y
,
var Float32Array = require( '@stdlib/array/float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0 ] );
var x = new Float32Array( [ 1.0, 0.0, 1.0, 0.0 ] );
var y = new Float32Array( [ 1.0, 0.0, 1.0, 0.0 ] );
sgemv( 'row-major', 'no-transpose', 2, 2, 1.0, A, 2, x, 2, 1.0, y, 2 );
// y => <Float32Array>[ 4.0, 0.0, 8.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array/float32' );
// Initial arrays...
var x0 = new Float32Array( [ 0.0, 1.0, 1.0 ] );
var y0 = new Float32Array( [ 0.0, 1.0, 1.0 ] );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
sgemv( 'row-major', 'no-transpose', 2, 2, 1.0, A, 2, x1, -1, 1.0, y1, -1 );
// y0 => <Float32Array>[ 0.0, 8.0, 4.0 ]
sgemv.ndarray( trans, M, N, α, A, sa1, sa2, oa, x, sx, ox, β, y, sy, oy )
Performs one of the matrix-vector operations y = α*A*x + β*y
or y = α*A^T*x + β*y
, using alternative indexing semantics and where α
and β
are scalars, x
and y
are vectors, and A
is an M
by N
matrix.
var Float32Array = require( '@stdlib/array/float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x = new Float32Array( [ 1.0, 1.0, 1.0 ] );
var y = new Float32Array( [ 1.0, 1.0 ] );
sgemv.ndarray( 'no-transpose', 2, 3, 1.0, A, 3, 1, 0, x, 1, 0, 1.0, y, 1, 0 );
// y => <Float32Array>[ 7.0, 16.0 ]
The function has the following additional parameters:
- sa1: stride of the first dimension of
A
. - sa2: stride of the second dimension of
A
. - oa: starting index for
A
. - ox: starting index for
x
. - oy: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float32Array = require( '@stdlib/array/float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x = new Float32Array( [ 0.0, 1.0, 2.0, 3.0 ] );
var y = new Float32Array( [ 7.0, 8.0, 9.0, 10.0 ] );
sgemv.ndarray( 'no-transpose', 2, 3, 1.0, A, 3, 1, 0, x, 1, 1, 1.0, y, -2, 2 );
// y => <Float32Array>[ 39, 8, 23, 10 ]
Notes
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var sgemv = require( '@stdlib/blas/base/sgemv' );
var opts = {
'dtype': 'float32'
};
var M = 3;
var N = 3;
var A = discreteUniform( M*N, 0, 255, opts );
var x = discreteUniform( N, 0, 255, opts );
var y = discreteUniform( M, 0, 255, opts );
sgemv( 'row-major', 'no-transpose', M, N, 1.0, A, N, x, -1, 1.0, y, -1 );
console.log( y );
C APIs
Usage
#include "stdlib/blas/base/sgemv.h"
TODO
TODO.
TODO
TODO
TODO
Examples
TODO