sgemm

Perform the matrix-matrix operation C = α*op(A)*op(B) + β*C where op(X) is one of the op(X) = X, or op(X) = X^T.

Usage

var sgemm = require( '@stdlib/blas/base/sgemm' );

sgemm( ord, ta, tb, M, N, K, α, A, lda, B, ldb, β, C, ldc )

Performs the matrix-matrix operation C = α*op(A)*op(B) + β*C where op(X) is either op(X) = X or op(X) = X^T, α and β are scalars, A, B, and C are matrices, with op(A) an M by K matrix, op(B) a K by N matrix, and C an M by N matrix.

var Float32Array = require( '@stdlib/array/float32' );

var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0 ] );
var B = new Float32Array( [ 1.0, 1.0, 0.0, 1.0 ] );
var C = new Float32Array( [ 1.0, 2.0, 3.0, 4.0 ] );

sgemm( 'row-major', 'no-transpose', 'no-transpose', 2, 2, 2, 1.0, A, 2, B, 2, 1.0, C, 2 );
// C => <Float32Array>[ 2.0, 5.0, 6.0, 11.0 ]

The function has the following parameters:

  • ord: storage layout.
  • ta: specifies whether A should be transposed, conjugate-transposed, or not transposed.
  • tb: specifies whether B should be transposed, conjugate-transposed, or not transposed.
  • M: number of rows in the matrix op(A) and in the matrix C.
  • N: number of columns in the matrix op(B) and in the matrix C.
  • K: number of columns in the matrix op(A) and number of rows in the matrix op(B).
  • α: scalar constant.
  • A: first input matrix stored in linear memory as a Float32Array.
  • lda: stride of the first dimension of A (leading dimension of A).
  • B: second input matrix stored in linear memory as a Float32Array.
  • ldb: stride of the first dimension of B (leading dimension of B).
  • β: scalar constant.
  • C: third input matrix stored in linear memory as a Float32Array.
  • ldc: stride of the first dimension of C (leading dimension of C).

The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to perform matrix multiplication of two subarrays

var Float32Array = require( '@stdlib/array/float32' );

var A = new Float32Array( [ 1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0 ] );
var B = new Float32Array( [ 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 ] );
var C = new Float32Array( [ 1.0, 2.0, 3.0, 4.0 ] );

sgemm( 'row-major', 'no-transpose', 'no-transpose', 2, 2, 2, 1.0, A, 4, B, 4, 1.0, C, 2 );
// C => <Float32Array>[ 2.0, 5.0, 6.0, 11.0 ]

sgemm.ndarray( ta, tb, M, N, K, α, A, sa1, sa2, oa, B, sb1, sb2, ob, β, C, sc1, sc2, oc )

Performs the matrix-matrix operation C = α*op(A)*op(B) + β*C, using alternative indexing semantics and where op(X) is either op(X) = X or op(X) = X^T, α and β are scalars, A, B, and C are matrices, with op(A) an M by K matrix, op(B) a K by N matrix, and C an M by N matrix.

var Float32Array = require( '@stdlib/array/float32' );

var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0 ] );
var B = new Float32Array( [ 1.0, 1.0, 0.0, 1.0 ] );
var C = new Float32Array( [ 1.0, 2.0, 3.0, 4.0 ] );

sgemm.ndarray( 'no-transpose', 'no-transpose', 2, 2, 2, 1.0, A, 2, 1, 0, B, 2, 1, 0, 1.0, C, 2, 1, 0 );
// C => <Float32Array>[ 2.0, 5.0, 6.0, 11.0 ]

The function has the following additional parameters:

  • sa1: stride of the first dimension of A.
  • sa2: stride of the second dimension of A.
  • oa: starting index for A.
  • sb1: stride of the first dimension of B.
  • sb2: stride of the second dimension of B.
  • ob: starting index for B.
  • sc1: stride of the first dimension of C.
  • sc2: stride of the second dimension of C.
  • oc: starting index for C.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,

var Float32Array = require( '@stdlib/array/float32' );

var A = new Float32Array( [ 0.0, 0.0, 1.0, 3.0, 2.0, 4.0 ] );
var B = new Float32Array( [ 0.0, 1.0, 0.0, 1.0, 1.0 ] );
var C = new Float32Array( [ 0.0, 0.0, 0.0, 1.0, 3.0, 2.0, 4.0 ] );

sgemm.ndarray( 'no-transpose', 'no-transpose', 2, 2, 2, 1.0, A, 1, 2, 2, B, 1, 2, 1, 1.0, C, 1, 2, 3 );
// C => <Float32Array>[ 0.0, 0.0, 0.0, 2.0, 6.0, 5.0, 11.0 ]

Notes

  • sgemm() corresponds to the BLAS level 3 function sgemm.

Examples

var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var sgemm = require( '@stdlib/blas/base/sgemm' );

var opts = {
    'dtype': 'float32'
};

var M = 3;
var N = 4;
var K = 2;

var A = discreteUniform( M*K, 0, 10, opts ); // 3x2
var B = discreteUniform( K*N, 0, 10, opts ); // 2x4
var C = discreteUniform( M*N, 0, 10, opts ); // 3x4

sgemm( 'row-major', 'no-transpose', 'no-transpose', M, N, K, 1.0, A, K, B, N, 1.0, C, N );
console.log( C );

sgemm.ndarray( 'no-transpose', 'no-transpose', M, N, K, 1.0, A, K, 1, 0, B, N, 1, 0, 1.0, C, N, 1, 0 );
console.log( C );

C APIs

Usage

#include "stdlib/blas/base/sgemm.h"

TODO

TODO.

TODO

TODO

TODO

Examples

TODO
Did you find this page helpful?