smap2
Apply a binary function to single-precision floating-point strided input arrays and assign results to a single-precision floating-point strided output array.
Usage
var smap2 = require( '@stdlib/strided/base/smap2' );
smap2( N, x, strideX, y, strideY, z, strideZ, fcn )
Applies a binary function to single-precision floating-point strided input arrays and assigns results to a single-precision floating-point strided output array.
var Float32Array = require( '@stdlib/array/float32' );
var addf = require( '@stdlib/math/base/ops/addf' );
var x = new Float32Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
var y = new Float32Array( [ 2.0, 1.0, 3.0, -2.0, 4.0, 1.0, -1.0, 3.0 ] );
var z = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
smap2( x.length, x, 1, y, 1, z, 1, addf );
// z => <Float32Array>[ 0.0, 2.0, 6.0, -7.0, 8.0, 1.0, -2.0, 0.0 ]
The function accepts the following arguments:
- N: number of indexed elements.
- x: input
Float32Array
. - strideX: index increment for
x
. - y: input
Float32Array
. - strideY: index increment for
y
. - z: output
Float32Array
. - strideZ: index increment for
z
. - fcn: function to apply.
The N
and stride
parameters determine which strided array elements are accessed at runtime. For example, to index every other value in x
and to index the first N
elements of y
in reverse order,
var Float32Array = require( '@stdlib/array/float32' );
var addf = require( '@stdlib/math/base/ops/addf' );
var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
smap2( 3, x, 2, y, -1, z, 1, addf );
// z => <Float32Array>[ 1.0, -2.0, -4.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array/float32' );
var addf = require( '@stdlib/math/base/ops/addf' );
// Initial arrays...
var x0 = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y0 = new Float32Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var z1 = new Float32Array( z0.buffer, z0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
smap2( 3, x1, -2, y1, 1, z1, 1, addf );
// z0 => <Float32Array>[ 0.0, 0.0, -4.0, -1.0, 1.0, 0.0 ]
smap2.ndarray( N, x, strideX, offsetX, y, strideY, offsetY, z, strideZ, offsetZ, fcn )
Applies a binary function to single-precision floating-point strided input arrays and assigns results to a single-precision floating-point strided output array using alternative indexing semantics.
var Float32Array = require( '@stdlib/array/float32' );
var addf = require( '@stdlib/math/base/ops/addf' );
var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 2.0, 2.0, 3.0 ] );
var z = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );
smap2.ndarray( x.length, x, 1, 0, y, 1, 0, z, 1, 0, addf );
// z => <Float32Array>[ 0.0, -1.0, -1.0, -2.0, -2.0 ]
The function accepts the following addfitional arguments:
- offsetX: starting index for
x
. - offsetY: starting index for
y
. - offsetZ: starting index for
z
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset parameters support indexing semantics based on starting indices. For example, to index every other value in x
starting from the second value and to index the last N
elements in y
in reverse order,
var Float32Array = require( '@stdlib/array/float32' );
var addf = require( '@stdlib/math/base/ops/addf' );
var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
smap2.ndarray( 3, x, 2, 1, y, -1, y.length-1, z, 1, 3, addf );
// z => <Float32Array>[ 0.0, 0.0, 0.0, 1.0, -1.0, -4.0 ]
Examples
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Float32Array = require( '@stdlib/array/float32' );
var addf = require( '@stdlib/math/base/ops/addf' );
var smap2 = require( '@stdlib/strided/base/smap2' );
var x = filledarrayBy( 10, 'float32', discreteUniform( -100, 100 ) );
console.log( x );
var y = filledarrayBy( x.length, 'float32', discreteUniform( -100, 100 ) );
console.log( y );
var z = new Float32Array( x.length );
console.log( z );
smap2.ndarray( x.length, x, 1, 0, y, -1, y.length-1, z, 1, 0, addf );
console.log( z );
C APIs
Usage
#include "stdlib/strided/base/smap2.h"
stdlib_strided_smap2( N, *X, strideX, *Y, strideY, *Z, strideZ, fcn )
Applies a binary function to single-precision floating-point strided input arrays and assigns results to a single-precision floating-point strided output array.
#include <stdint.h>
static float addf( const float x, const float y ) {
return x + y;
}
float X[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f };
float Y[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f };
float Z[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
int64_t N = 6;
stdlib_strided_smap2( N, X, 1, Y, 1, Z, 1, addf );
The function accepts the following arguments:
- N:
[in] int64_t
number of indexed elements. - X:
[in] float*
input array. - strideX
[in] int64_t
index increment forX
. - Y:
[in] float*
input array. - strideY:
[in] int64_t
index increment forY
. - Z:
[out] float*
output array. - strideZ:
[in] int64_t
index increment forZ
. - fcn:
[in] float (*fcn)( float, float )
binary function to apply.
void stdlib_strided_smap2( const int64_t N, const float *X, const int64_t strideX, const float *Y, const int64_t strideY, float *Z, const int64_t strideZ, float (*fcn)( float, float ) );
Examples
#include "stdlib/strided/base/smap2.h"
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
// Define a callback:
static float addf( const float x, const float y ) {
return x + y;
}
int main( void ) {
// Create input strided arrays:
float X[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f };
float Y[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f };
// Create an output strided array:
float Z[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
// Specify the number of elements:
int64_t N = 6;
// Define the strides:
int64_t strideX = 1;
int64_t strideY = -1;
int64_t strideZ = 1;
// Apply the callback:
stdlib_strided_smap2( N, X, strideX, Y, strideY, Z, strideZ, addf );
// Print the results:
for ( int64_t i = 0; i < N; i++ ) {
printf( "Z[ %"PRId64" ] = %f\n", i, Z[ i ] );
}
}