incrpcorrdist
Compute a sample Pearson product-moment correlation distance incrementally.
The sample Pearson product-moment correlation distance is defined as
where r
is the sample Pearson product-moment correlation coefficient, cov(x,y)
is the sample covariance, and σ
corresponds to the sample standard deviation. As r
resides on the interval [-1,1]
, d
resides on the interval [0,2]
.
Usage
var incrpcorrdist = require( '@stdlib/stats/incr/pcorrdist' );
incrpcorrdist( [mx, my] )
Returns an accumulator function
which incrementally computes a sample Pearson product-moment correlation distance.
var accumulator = incrpcorrdist();
If the means are already known, provide mx
and my
arguments.
var accumulator = incrpcorrdist( 3.0, -5.5 );
accumulator( [x, y] )
If provided input value x
and y
, the accumulator function returns an updated sample correlation coefficient. If not provided input values x
and y
, the accumulator function returns the current sample correlation coefficient.
var accumulator = incrpcorrdist();
var d = accumulator( 2.0, 1.0 );
// returns 1.0
d = accumulator( 1.0, -5.0 );
// returns 0.0
d = accumulator( 3.0, 3.14 );
// returns ~0.035
d = accumulator();
// returns ~0.035
Notes
- Input values are not type checked. If provided
NaN
or a value which, when used in computations, results inNaN
, the accumulated value isNaN
for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrpcorrdist = require( '@stdlib/stats/incr/pcorrdist' );
var accumulator;
var x;
var y;
var i;
// Initialize an accumulator:
accumulator = incrpcorrdist();
// For each simulated datum, update the sample correlation distance...
for ( i = 0; i < 100; i++ ) {
x = randu() * 100.0;
y = randu() * 100.0;
accumulator( x, y );
}
console.log( accumulator() );