smeanwd
Calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.
The arithmetic mean is defined as
Usage
var smeanwd = require( '@stdlib/stats/base/smeanwd' );
smeanwd( N, x, strideX )
Computes the arithmetic mean of a single-precision floating-point strided array x
using Welford's algorithm.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var v = smeanwd( x.length, x, 1 );
// returns ~0.3333
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float32Array
. - strideX: stride length for
x
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the arithmetic mean of every other element in x
,
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var v = smeanwd( 4, x, 2 );
// returns 1.25
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array/float32' );
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = smeanwd( 4, x1, 2 );
// returns 1.25
smeanwd.ndarray( N, x, strideX, offsetX )
Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm and alternative indexing semantics.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var v = smeanwd.ndarray( x.length, x, 1, 0 );
// returns ~0.33333
The function has the following additional parameters:
- offsetX: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other element in x
starting from the second element
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = smeanwd.ndarray( 4, x, 2, 1 );
// returns 1.25
Notes
- If
N <= 0
, both functions returnNaN
.
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var smeanwd = require( '@stdlib/stats/base/smeanwd' );
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float32'
});
console.log( x );
var v = smeanwd( x.length, x, 1 );
console.log( v );
C APIs
Usage
#include "stdlib/stats/base/smeanwd.h"
stdlib_strided_smeanwd( N, *X, strideX )
Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.
const float x[] = { 1.0f, 2.0f, 3.0f };
float v = stdlib_strided_smeanwd( 3, x, 1 );
// returns 2.0f
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] CBLAS_INT
stride length forX
.
float stdlib_strided_smeanwd( const CBLAS_INT N, const float *X, const CBLAS_INT strideX );
stdlib_strided_smeanwd_ndarray( N, *X, strideX, offsetX )
Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm and alternative indexing semantics.
const float x[] = { 1.0f, 2.0f, 3.0f };
float v = stdlib_strided_smeanwd_ndarray( 4, x, 1, 0 );
// returns 2.0f
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
.
float stdlib_strided_smeanwd_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
Examples
#include "stdlib/stats/base/smeanwd.h"
#include <stdio.h>
int main( void ) {
// Create a strided array:
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
// Specify the number of elements:
const int N = 4;
// Specify the stride length:
const int strideX = 2;
// Compute the arithmetic mean:
float v = stdlib_strided_smeanwd( N, x, strideX );
// Print the result:
printf( "mean: %f\n", v );
}
References
- Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4 (3). Taylor & Francis: 419–20. doi:10.1080/00401706.1962.10490022.
- van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." Communications of the ACM 11 (3): 149–50. doi:10.1145/362929.362961.