scumax

Calculate the cumulative maximum of single-precision floating-point strided array elements.

Usage

var scumax = require( '@stdlib/stats/base/scumax' );

scumax( N, x, strideX, y, strideY )

Computes the cumulative maximum of single-precision floating-point strided array elements.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );

scumax( x.length, x, 1, y, 1 );
// y => <Float32Array>[ 1.0, 1.0, 2.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float32Array.
  • strideX: stride length for x.
  • y: output Float32Array.
  • strideY: stride length for y.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative maximum of every other element in x,

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float32Array( x.length );

var v = scumax( 4, x, 2, y, 1 );
// y => <Float32Array>[ 1.0, 2.0, 2.0, 4.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array/float32' );

// Initial arrays...
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float32Array( x0.length );

// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

scumax( 4, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 4.0, 4.0, 4.0, 4.0, 0.0 ]

scumax.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative maximum of single-precision floating-point strided array elements using alternative indexing semantics.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );

scumax.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 1.0, 1.0, 2.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative maximum of every other element in x starting from the second element and to store in the last N elements of y starting from the last element

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float32Array( x.length );

scumax.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 4.0, 2.0, 1.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.

Examples

var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Float32Array = require( '@stdlib/array/float32' );
var scumax = require( '@stdlib/stats/base/scumax' );

var x = discreteUniform( 10, -50, 50, {
    'dtype': 'float32'
});
console.log( x );

var y = new Float32Array( x.length );
console.log( y );

scumax( x.length, x, 1, y, -1 );
console.log( y );

C APIs

Usage

#include "stdlib/stats/base/scumax.h"

stdlib_strided_scumax( N, *X, strideX, *Y, strideY )

Computes the cumulative maximum of single-precision floating-point strided array elements.

const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };

stdlib_strided_scumax( 4, x, 2, y, -2 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] float* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • Y: [out] float* output array.
  • strideY: [in] CBLAS_INT stride length for Y.
void stdlib_strided_scumax( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, float *Y, const CBLAS_INT strideY );

stdlib_strided_scumax_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY )

Computes the cumulative maximum of single-precision floating-point strided array elements using alternative indexing semantics.

const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };

stdlib_strided_scumax_ndarray( 4, x, 2, 0, y, -2, 0 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] float* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • offsetX: [in] CBLAS_INT starting index for X.
  • Y: [out] float* output array.
  • strideY: [in] CBLAS_INT stride length for Y.
  • offsetY: [in] CBLAS_INT starting index for Y.
void stdlib_strided_scumax_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, float *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );

Examples

#include "stdlib/stats/base/scumax.h"
#include <stdio.h>

int main( void ) {
    // Create strided arrays:
    const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
    float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };

    // Specify the number of elements:
    const int N = 4;

    // Specify stride lengths:
    const int strideX = 2;
    const int strideY = -2;

    // Compute the cumulative maximum:
    stdlib_strided_scumax( N, x, strideX, y, strideY );

   // Print the result:
    for ( int i = 0; i < 8; i++ ) {
        printf( "y[ %d ] = %f\n", i, y[ i ] );
    }
}
Did you find this page helpful?