scumax
Calculate the cumulative maximum of single-precision floating-point strided array elements.
Usage
var scumax = require( '@stdlib/stats/base/scumax' );
scumax( N, x, strideX, y, strideY )
Computes the cumulative maximum of single-precision floating-point strided array elements.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );
scumax( x.length, x, 1, y, 1 );
// y => <Float32Array>[ 1.0, 1.0, 2.0 ]
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float32Array
. - strideX: stride length for
x
. - y: output
Float32Array
. - strideY: stride length for
y
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative maximum of every other element in x
,
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float32Array( x.length );
var v = scumax( 4, x, 2, y, 1 );
// y => <Float32Array>[ 1.0, 2.0, 2.0, 4.0, 0.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array/float32' );
// Initial arrays...
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float32Array( x0.length );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
scumax( 4, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 4.0, 4.0, 4.0, 4.0, 0.0 ]
scumax.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Computes the cumulative maximum of single-precision floating-point strided array elements using alternative indexing semantics.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );
scumax.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 1.0, 1.0, 2.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative maximum of every other element in x
starting from the second element and to store in the last N
elements of y
starting from the last element
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float32Array( x.length );
scumax.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 4.0, 2.0, 1.0, 1.0 ]
Notes
- If
N <= 0
, both functions returny
unchanged.
Examples
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Float32Array = require( '@stdlib/array/float32' );
var scumax = require( '@stdlib/stats/base/scumax' );
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float32'
});
console.log( x );
var y = new Float32Array( x.length );
console.log( y );
scumax( x.length, x, 1, y, -1 );
console.log( y );
C APIs
Usage
#include "stdlib/stats/base/scumax.h"
stdlib_strided_scumax( N, *X, strideX, *Y, strideY )
Computes the cumulative maximum of single-precision floating-point strided array elements.
const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
stdlib_strided_scumax( 4, x, 2, y, -2 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - Y:
[out] float*
output array. - strideY:
[in] CBLAS_INT
stride length forY
.
void stdlib_strided_scumax( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, float *Y, const CBLAS_INT strideY );
stdlib_strided_scumax_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY )
Computes the cumulative maximum of single-precision floating-point strided array elements using alternative indexing semantics.
const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
stdlib_strided_scumax_ndarray( 4, x, 2, 0, y, -2, 0 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - Y:
[out] float*
output array. - strideY:
[in] CBLAS_INT
stride length forY
. - offsetY:
[in] CBLAS_INT
starting index forY
.
void stdlib_strided_scumax_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, float *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );
Examples
#include "stdlib/stats/base/scumax.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 2;
const int strideY = -2;
// Compute the cumulative maximum:
stdlib_strided_scumax( N, x, strideX, y, strideY );
// Print the result:
for ( int i = 0; i < 8; i++ ) {
printf( "y[ %d ] = %f\n", i, y[ i ] );
}
}