dsem

Calculate the standard error of the mean of a double-precision floating-point strided array.

The standard error of the mean of a finite size sample of size n is given by

where σ is the population standard deviation.

Often in the analysis of data, the true population standard deviation is not known a priori and must be estimated from a sample drawn from the population distribution. In this scenario, one must use a sample standard deviation to compute an estimate for the standard error of the mean

where s is the sample standard deviation.

Usage

var dsem = require( '@stdlib/stats/base/dsem' );

dsem( N, correction, x, stride )

Computes the standard error of the mean of a double-precision floating-point strided array x.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dsem( N, 1, x, 1 );
// returns ~1.20185

The function has the following parameters:

  • N: number of indexed elements.
  • correction: degrees of freedom adjustment. Setting this parameter to a value other than 0 has the effect of adjusting the divisor during the calculation of the standard deviation according to N-c where c corresponds to the provided degrees of freedom adjustment. When computing the standard deviation of a population, setting this parameter to 0 is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample standard deviation, setting this parameter to 1 is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
  • x: input Float64Array.
  • stride: index increment for x.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the standard error of the mean of every other element in x,

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var N = floor( x.length / 2 );

var v = dsem( N, 1, x, 2 );
// returns 1.25

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = dsem( N, 1, x1, 2 );
// returns 1.25

dsem.ndarray( N, correction, x, stride, offset )

Computes the standard error of the mean of a double-precision floating-point strided array using alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dsem.ndarray( N, 1, x, 1, 0 );
// returns ~1.20185

The function has the following additional parameters:

  • offset: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the standard error of the mean for every other value in x starting from the second value

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = dsem.ndarray( N, 1, x, 2, 1 );
// returns 1.25

Notes

  • If N <= 0, both functions return NaN.
  • If N - c is less than or equal to 0 (where c corresponds to the provided degrees of freedom adjustment), both functions return NaN.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var dsem = require( '@stdlib/stats/base/dsem' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( (randu()*100.0) - 50.0 );
}
console.log( x );

var v = dsem( x.length, 1, x, 1 );
console.log( v );
Did you find this page helpful?