dnanmeanwd
Calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring
NaN
values.
The arithmetic mean is defined as
Usage
var dnanmeanwd = require( '@stdlib/stats/base/dnanmeanwd' );
dnanmeanwd( N, x, strideX )
Computes the arithmetic mean of a double-precision floating-point strided array x
, using Welford's algorithm and ignoring NaN
values.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var v = dnanmeanwd( x.length, x, 1 );
// returns ~0.3333
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: index increment for
x
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the arithmetic mean of every other element in x
,
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var v = dnanmeanwd( 4, x, 2 );
// returns 1.25
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dnanmeanwd( 4, x1, 2 );
// returns 1.25
dnanmeanwd.ndarray( N, x, strideX, offsetX )
Computes the arithmetic mean of a double-precision floating-point strided array, ignoring NaN
values and using Welford's algorithm and alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var v = dnanmeanwd.ndarray( x.length, x, 1, 0 );
// returns ~0.33333
The function has the following additional parameters:
- offsetX: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other element in x
starting from the second element
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var v = dnanmeanwd.ndarray( 4, x, 2, 1 );
// returns 1.25
Notes
- If
N <= 0
, both functions returnNaN
. - If every indexed element is
NaN
, both functions returnNaN
.
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var dnanmeanwd = require( '@stdlib/stats/base/dnanmeanwd' );
var x;
var i;
x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( randu() * 10.0 );
}
}
console.log( x );
var v = dnanmeanwd( x.length, x, 1 );
console.log( v );
C APIs
Usage
#include "stdlib/stats/base/dnanmeanwd.h"
stdlib_strided_dnanmeanwd( N, *X, strideX )
Computes the arithmetic mean of a double-precision floating-point strided array x
, using Welford's algorithm and ignoring NaN
values.
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
double v = stdlib_strided_dnanmeanwd( 6, x, 2 );
// returns ~4.67
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
.
double stdlib_strided_dnanmeanwd( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );
stdlib_strided_dnanmeanwd_ndarray( N, *X, strideX, offsetX )
Computes the arithmetic mean of a double-precision floating-point strided array, ignoring NaN
values and using Welford's algorithm and alternative indexing semantics.
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
double v = stdlib_strided_dnanmeanwd_ndarray( 6, x, 2, 0 );
// returns ~4.67
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
.
double stdlib_strided_dnanmeanwd_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
Examples
#include "stdlib/stats/base/dnanmeanwd.h"
#include <stdio.h>
int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
// Specify the number of elements:
const int N = 6;
// Specify the stride length:
const int strideX = 2;
// Compute the arithmetic mean:
double v = stdlib_strided_dnanmeanwd( N, x, strideX );
// Print the result:
printf( "mean: %lf\n", v );
}
References
- Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4 (3). Taylor & Francis: 419–20. doi:10.1080/00401706.1962.10490022.
- van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." Communications of the ACM 11 (3): 149–50. doi:10.1145/362929.362961.