Moment-Generating Function
Triangular distribution moment-generating function (MGF).
The moment-generating function for a triangular random variable is
where a
is the lower limit, b
is the upper limit, and c
is the mode of the distribution. The parameters must satisfy b > a
and a <= b <= c
.
Usage
var mgf = require( '@stdlib/stats/base/dists/triangular/mgf' );
mgf( t, a, b, c )
Evaluates the moment-generating function (MGF) for a triangular distribution with parameters a
(lower limit), b
(upper limit), and c
(mode).
var y = mgf( 0.5, -1.0, 1.0, 0.0 );
// returns ~1.021
y = mgf( 0.5, -1.0, 1.0, 0.5 );
// returns ~1.111
y = mgf( -0.3, -20.0, 0.0, -2.0 );
// returns ~24.334
y = mgf( -2.0, -1.0, 1.0, 0.0 );
// returns ~1.381
If provided NaN
as any argument, the function returns NaN
.
var y = mgf( NaN, 0.0, 1.0, 0.5 );
// returns NaN
y = mgf( 0.0, NaN, 1.0, 0.5 );
// returns NaN
y = mgf( 0.0, 0.0, NaN, 0.5 );
// returns NaN
y = mgf( 2.0, 1.0, 0.0, NaN );
// returns NaN
If provided parameters not satisfying a <= c <= b
, the function returns NaN
.
var y = mgf( 2.0, 1.0, 0.0, 1.5 );
// returns NaN
y = mgf( 2.0, 1.0, 0.0, -1.0 );
// returns NaN
y = mgf( 2.0, 0.0, -1.0, 0.5 );
// returns NaN
mgf.factory( a, b, c )
Returns a function for evaluating the moment-generating function of a triangular distribution with parameters a
(lower limit), b
(upper limit), and c
(mode).
var mymgf = mgf.factory( 0.0, 2.0, 1.0 );
var y = mymgf( -1.0 );
// returns ~0.3996
y = mymgf( 2.0 );
// returns ~10.205
Examples
var randu = require( '@stdlib/random/base/randu' );
var mgf = require( '@stdlib/stats/base/dists/triangular/mgf' );
var a;
var b;
var c;
var t;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
t = randu() * 5.0;
a = randu() * 10.0;
b = a + (randu() * 40.0);
c = a + (( b - a ) * randu());
v = mgf( t, a, b, c );
console.log( 't: %d, a: %d, b: %d, c: %d, M_X(t;a,b,c): %d', t.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), c.toFixed( 4 ), v.toFixed( 4 ) );
}
C APIs
Usage
#include "stdlib/stats/base/dists/triangular/mgf.h"
stdlib_base_dists_triangular_mgf( t, a, b, c )
Evaluates the moment-generating function (MGF) for a triangular distribution with parameters a
(lower limit), b
(upper limit), and c
(mode).
double y = stdlib_base_dists_triangular_mgf( 0.5, -1.0, 1.0, 0.0 );
// returns ~1.021
The function accepts the following arguments:
- t:
[in] double
input value. - a:
[in] double
lower limit. - b:
[in] double
upper limit. - c:
[in] double
mode.
double stdlib_base_dists_triangular_mgf( const double t, const double a, const double b, const double c );
Examples
#include "stdlib/stats/base/dists/triangular/mgf.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double a;
double b;
double c;
double t;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
t = random_uniform( 0.0, 5.0 );
a = random_uniform( 0.0, 10.0 );
b = random_uniform( a+STDLIB_CONSTANT_FLOAT64_EPS, 40.0 );
c = random_uniform( a, b );
y = stdlib_base_dists_triangular_mgf( t, a, b, c );
printf( "t: %lf, a: %lf, b: %lf, c: %lf, M_X(t;a,b,c): %lf\n", t, a, b, c, y );
}
}