Probability Density Function
Rayleigh distribution probability density function (PDF).
The probability density function (PDF) for a Rayleigh random variable is
where sigma > 0
is the scale parameter.
Usage
var pdf = require( '@stdlib/stats/base/dists/rayleigh/pdf' );
pdf( x, sigma )
Evaluates the probability density function for a Rayleigh distribution with scale parameter sigma
.
var y = pdf( 0.3, 1.0 );
// returns ~0.287
y = pdf( 2.0, 0.8 );
// returns ~0.137
y = pdf( -1.0, 0.5 );
// returns 0.0
If provided NaN
as any argument, the function returns NaN
.
var y = pdf( NaN, 1.0 );
// returns NaN
y = pdf( 0.0, NaN );
// returns NaN
If provided sigma < 0
, the function returns NaN
.
var y = pdf( 2.0, -1.0 );
// returns NaN
If provided sigma = 0
, the function evaluates the PDF of a degenerate distribution centered at 0
.
var y = pdf( -2.0, 0.0 );
// returns 0.0
y = pdf( 0.0, 0.0 );
// returns Infinity
y = pdf( 2.0, 0.0 );
// returns 0.0
pdf.factory( sigma )
Returns a function for evaluating the probability density function (PDF) of a Rayleigh distribution with parameter sigma
(scale parameter).
var myPDF = pdf.factory( 4.0 );
var y = myPDF( 6.0 );
// returns ~0.122
y = myPDF( 4.0 );
// returns ~0.152
Examples
var randu = require( '@stdlib/random/base/randu' );
var pdf = require( '@stdlib/stats/base/dists/rayleigh/pdf' );
var sigma;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
sigma = randu() * 10.0;
y = pdf( x, sigma );
console.log( 'x: %d, σ: %d, f(x;σ): %d', x.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}