Logarithm of Probability Density Function
Rayleigh distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a Rayleigh random variable is
where sigma > 0
is the scale parameter.
Usage
var logpdf = require( '@stdlib/stats/base/dists/rayleigh/logpdf' );
logpdf( x, sigma )
Evaluates the logarithm of the probability density function for a Rayleigh distribution with scale parameter sigma
.
var y = logpdf( 0.3, 1.0 );
// returns ~-1.249
y = logpdf( 2.0, 0.8 );
// returns ~-1.986
y = logpdf( -1.0, 0.5 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN );
// returns NaN
If provided sigma < 0
, the function returns NaN
.
var y = logpdf( 2.0, -1.0 );
// returns NaN
If provided sigma = 0
, the function evaluates the PDF of a degenerate distribution centered at 0
.
var y = logpdf( -2.0, 0.0 );
// returns -Infinity
y = logpdf( 0.0, 0.0 );
// returns +Infinity
y = logpdf( 2.0, 0.0 );
// returns -Infinity
logpdf.factory( sigma )
Returns a function for evaluating the logarithm of the probability density function (PDF) of a Rayleigh distribution with parameter sigma
(scale parameter).
var mylogpdf = logpdf.factory( 4.0 );
var y = mylogpdf( 6.0 );
// returns ~-2.106
y = mylogpdf( 4.0 );
// returns ~-1.886
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/rayleigh/logpdf' );
var sigma;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
sigma = randu() * 10.0;
y = logpdf( x, sigma );
console.log( 'x: %d, σ: %d, ln(f(x;σ)): %d', x.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}
C APIs
Usage
#include "stdlib/stats/base/dists/rayleigh/logpdf.h"
stdlib_base_dists_rayleigh_logpdf( x, sigma )
Evaluates the logarithm of the probability density function (PDF) for a Rayleigh distribution.
double out = stdlib_base_dists_rayleigh_logpdf( 0.3, 1.0 );
// returns ~-1.249
The function accepts the following arguments:
- x:
[in] double
input value. - sigma:
[in] double
scale parameter.
double stdlib_base_dists_rayleigh_logpdf( const double x, const double sigma );
Examples
#include "stdlib/stats/base/dists/rayleigh/logpdf.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double sigma;
double x;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x = random_uniform( 0.0, 10.0 );
sigma = random_uniform( 0.0, 10.0 );
y = stdlib_base_dists_rayleigh_logpdf( x, sigma );
printf( "x: %lf, σ: %lf, ln(f(x;σ)): %lf\n", x, sigma, y );
}
}