Logarithm of Probability Mass Function
Evaluate the natural logarithm of the probability mass function (PMF) for a negative binomial distribution.
The probability mass function (PMF) for a negative binomial random variable X
is
where r > 0
is the number of successes until experiment is stopped and 0 < p <= 1
is the success probability. The random variable X
denotes the number of failures until the r
success is reached.
Usage
var logpmf = require( '@stdlib/stats/base/dists/negative-binomial/logpmf' );
logpmf( x, r, p )
Evaluates the natural logarithm of the probability mass function for a negative binomial distribution with number of successes until experiment is stopped r
and success probability p
.
var y = logpmf( 5.0, 20.0, 0.8 );
// returns ~-1.853
y = logpmf( 21.0, 20.0, 0.5 );
// returns ~-2.818
y = logpmf( 5.0, 10.0, 0.4 );
// returns ~-4.115
y = logpmf( 0.0, 10.0, 0.9 );
// returns ~-1.054
While r
can be interpreted as the number of successes until the experiment is stopped, the negative binomial distribution is also defined for non-integers r
. In this case, r
denotes shape parameter of the gamma mixing distribution.
var y = logpmf( 21.0, 15.5, 0.5 );
// returns ~-3.292
y = logpmf( 5.0, 7.4, 0.4 );
// returns ~-2.976
If provided a r
which is not a positive number, the function returns NaN
.
var y = logpmf( 2.0, 0.0, 0.5 );
// returns NaN
y = logpmf( 2.0, -2.0, 0.5 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
var y = logpmf( NaN, 20.0, 0.5 );
// returns NaN
y = logpmf( 0.0, NaN, 0.5 );
// returns NaN
y = logpmf( 0.0, 20.0, NaN );
// returns NaN
If provided a success probability p
outside of [0,1]
, the function returns NaN
.
var y = logpmf( 2.0, 20, -1.0 );
// returns NaN
y = logpmf( 2.0, 20, 1.5 );
// returns NaN
logpmf.factory( r, p )
Returns a function for evaluating the natural logarithm of the probability mass function (PMF) of a negative binomial distribution with number of successes until experiment is stopped r
and success probability p
.
var mylogpmf = logpmf.factory( 10, 0.5 );
var y = mylogpmf( 3.0 );
// returns ~-3.617
y = mylogpmf( 10.0 );
// returns ~-2.43
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var logpmf = require( '@stdlib/stats/base/dists/negative-binomial/logpmf' );
var i;
var r;
var p;
var x;
var y;
for ( i = 0; i < 10; i++ ) {
x = round( randu() * 30.0 );
r = randu() * 50.0;
p = randu();
y = logpmf( x, r, p );
console.log( 'x: %d, r: %d, p: %d, ln(P(X=x;r,p)): %d', x, r, p.toFixed( 4 ), y.toFixed( 4 ) );
}