Logarithm of Probability Density Function
Evaluate the natural logarithm of the probability density function (PDF) for a lognormal distribution.
The probability density function (PDF) for a lognormal random variable is
where mu
is the location parameter and sigma > 0
is the scale parameter. According to the definition, the natural logarithm of a random variable from a lognormal distribution follows a normal distribution.
Usage
var logpdf = require( '@stdlib/stats/base/dists/lognormal/logpdf' );
logpdf( x, mu, sigma )
Evaluates the natural logarithm of the probability density function (PDF) for a lognormal distribution with parameters mu
(location parameter) and sigma
(scale parameter).
var y = logpdf( 2.0, 0.0, 1.0 );
// returns ~-1.852
y = logpdf( 1.0, 0.0, 1.0 );
// returns ~-0.919
y = logpdf( 1.0, 3.0, 1.0 );
// returns ~-5.419
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 0.0, NaN );
// returns NaN
If provided sigma <= 0
, the function returns NaN
.
var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaN
y = logpdf( 2.0, 0.0, 0.0 );
// returns NaN
logpdf.factory( mu, sigma )
Returns a function for evaluating the natural logarithm of the probability density function (PDF) of a lognormal distribution with parameters mu
(location parameter) and sigma
(scale parameter).
var mylogpdf = logpdf.factory( 4.0, 2.0 );
var y = mylogpdf( 10.0 );
// returns ~-4.275
y = mylogpdf( 2.0 );
// returns ~-3.672
Examples
var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/lognormal/logpdf' );
var sigma;
var mu;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
mu = (randu() * 10.0) - 5.0;
sigma = randu() * 20.0;
y = logpdf( x, mu, sigma );
console.log( 'x: %d, µ: %d, σ: %d, ln(f(x;µ,σ)): %d', x.toFixed( 4 ), mu.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}