Entropy
Inverse gamma distribution differential entropy.
The differential entropy (in nats) for an inverse gamma random variable is
where α > 0
is the shape parameter, β > 0
is the rate parameter, Γ
and denotes the gamma and Ψ
the digamma function.
Usage
var entropy = require( '@stdlib/stats/base/dists/invgamma/entropy' );
entropy( alpha, beta )
Returns the differential entropy of an inverse gamma distribution with shape parameter alpha
and rate parameter beta
(in nats).
var v = entropy( 1.0, 1.0 );
// returns ~2.154
v = entropy( 4.0, 12.0 );
// returns ~1.996
v = entropy( 8.0, 2.0 );
// returns ~-0.922
If provided NaN
as any argument, the function returns NaN
.
var v = entropy( NaN, 2.0 );
// returns NaN
v = entropy( 2.0, NaN );
// returns NaN
If provided alpha <= 0
, the function returns NaN
.
var v = entropy( 0.0, 1.0 );
// returns NaN
v = entropy( -1.0, 1.0 );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var v = entropy( 1.0, 0.0 );
// returns NaN
v = entropy( 1.0, -1.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var entropy = require( '@stdlib/stats/base/dists/invgamma/entropy' );
var alpha;
var beta;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
alpha = ( randu()*10.0 ) + EPS;
beta = ( randu()*10.0 ) + EPS;
v = entropy( alpha, beta );
console.log( 'α: %d, β: %d, h(X;α,β): %d', alpha.toFixed( 4 ), beta.toFixed( 4 ), v.toFixed( 4 ) );
}
C APIs
Usage
#include "stdlib/stats/base/dists/invgamma/entropy.h"
stdlib_base_dists_invgamma_entropy( alpha, beta )
Returns the differential entropy of an inverse gamma distribution.
double out = stdlib_base_dists_invgamma_entropy( 1.0, 1.0 );
// returns ~2.154
The function accepts the following arguments:
- alpha:
[in] double
shape parameter. - beta:
[in] double
rate parameter.
double stdlib_base_dists_invgamma_entropy( const double alpha, const double beta );
Examples
#include "stdlib/stats/base/dists/invgamma/entropy.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double alpha;
double beta;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
alpha = random_uniform( 0, 20 );
beta = random_uniform( 0, 20 );
y = stdlib_base_dists_invgamma_entropy( alpha, beta );
printf( "α: %lf, β: %lf, h(X;α,β): %lf\n", alpha, beta, y );
}
}