Quantile Function
Hypergeometric distribution quantile function.
Imagine a scenario with a population of size N
, of which a subpopulation of size K
can be considered successes. We draw n
observations from the total population. Defining the random variable X
as the number of successes in the n
draws, X
is said to follow a hypergeometric distribution.
The quantile function for a hypergeometric random variable returns for any 0 <= p <= 1
the value x
for which
where F
is the cumulative distribution function (CDF) of a hypergeometric random variable with parameters N
, K
and n
, where N
is the population size, K
is the subpopulation size, and n
is the number of draws.
Usage
var quantile = require( '@stdlib/stats/base/dists/hypergeometric/quantile' );
quantile( p, N, K, n )
Evaluates the quantile function for a hypergeometric distribution with parameters N
(population size), K
(subpopulation size), and n
(number of draws).
var y = quantile( 0.5, 8, 4, 2 );
// returns 1
y = quantile( 0.9, 120, 80, 20 );
// returns 16
y = quantile( 0.0, 120, 80, 50 );
// returns 10
y = quantile( 0.0, 8, 4, 2 );
// returns 0
If provided NaN
as any argument, the function returns NaN
.
var y = quantile( NaN, 10, 5, 2 );
// returns NaN
y = quantile( 0.4, NaN, 5, 2 );
// returns NaN
y = quantile( 0.4, 10, NaN, 2 );
// returns NaN
y = quantile( 0.4, 10, 5, NaN );
// returns NaN
If provided a population size N
, subpopulation size K
or draws n
which is not a nonnegative integer, the function returns NaN
.
var y = quantile( 0.2, 6.5, 5, 2 );
// returns NaN
y = quantile( 0.2, 5, 1.5, 2 );
// returns NaN
y = quantile( 0.2, 10, 5, -2.0 );
// returns NaN
If the number of draws n
or the subpopulation size K
exceed population size N
, the function returns NaN
.
var y = quantile( 0.2, 10, 5, 12 );
// returns NaN
y = quantile( 0.2, 8, 3, 9 );
// returns NaN
quantile.factory( N, K, n )
Returns a function for evaluating the quantile function for a hypergeometric distribution with parameters N
(population size), K
(subpopulation size), and n
(number of draws).
var myquantile = quantile.factory( 100, 20, 10 );
var y = myquantile( 0.2 );
// returns 1
y = myquantile( 0.9 );
// returns 4
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var quantile = require( '@stdlib/stats/base/dists/hypergeometric/quantile' );
var i;
var N;
var K;
var n;
var p;
var y;
for ( i = 0; i < 10; i++ ) {
p = randu();
N = round( randu() * 20 );
K = round( randu() * N );
n = round( randu() * K );
y = quantile( p, N, K, n );
console.log( 'p: %d, N: %d, K: %d, n: %d, Q(p;N,K,n): %d', p.toFixed( 4 ), N, K, n, y.toFixed( 4 ) );
}