Probability Mass Function
Geometric distribution probability mass function (PMF).
The probability mass function (PMF) for a geometric random variable is defined as
where 0 <= p <= 1
is the success probability. The random variable X
denotes the number of failures until the first success in a sequence of independent Bernoulli trials.
Usage
var pmf = require( '@stdlib/stats/base/dists/geometric/pmf' );
pmf( x, p )
Evaluates the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1
.
var y = pmf( 4.0, 0.3 );
// returns ~0.072
y = pmf( 2.0, 0.7 );
// returns ~0.063
y = pmf( -1.0, 0.5 );
// returns 0.0
If provided NaN
as any argument, the function returns NaN
.
var y = pmf( NaN, 0.0 );
// returns NaN
y = pmf( 0.0, NaN );
// returns NaN
If provided a success probability p
outside of the interval [0,1]
, the function returns NaN
.
var y = pmf( 2.0, -1.0 );
// returns NaN
y = pmf( 2.0, 1.5 );
// returns NaN
pmf.factory( p )
Returns a function for evaluating the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1
.
var mypmf = pmf.factory( 0.5 );
var y = mypmf( 3.0 );
// returns 0.0625
y = mypmf( 1.0 );
// returns 0.25
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var pmf = require( '@stdlib/stats/base/dists/geometric/pmf' );
var p;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = round( randu() * 5.0 );
p = randu();
y = pmf( x, p );
console.log( 'x: %d, p: %d, P( X = x; p ): %d', x, p.toFixed( 4 ), y.toFixed( 4 ) );
}