Gamma
Gamma distribution constructor.
Usage
var Gamma = require( '@stdlib/stats/base/dists/gamma/ctor' );
Gamma( [alpha, beta] )
Returns a gamma distribution object.
var gamma = new Gamma();
var mode = gamma.mode;
// returns 0.0
By default, alpha = 1.0
and beta = 1.0
. To create a distribution having a different alpha
(shape parameter) and beta
(rate parameter), provide the corresponding arguments.
var gamma = new Gamma( 2.0, 4.0 );
var mu = gamma.mean;
// returns 0.5
gamma
A gamma distribution object has the following properties and methods...
Writable Properties
gamma.alpha
Shape parameter of the distribution. alpha
must be a positive number.
var gamma = new Gamma();
var alpha = gamma.alpha;
// returns 1.0
gamma.alpha = 3.0;
alpha = gamma.alpha;
// returns 3.0
gamma.beta
Rate parameter of the distribution. beta
must be a positive number.
var gamma = new Gamma( 2.0, 4.0 );
var b = gamma.beta;
// returns 4.0
gamma.beta = 3.0;
b = gamma.beta;
// returns 3.0
Computed Properties
Gamma.prototype.entropy
Returns the differential entropy.
var gamma = new Gamma( 4.0, 12.0 );
var entropy = gamma.entropy;
// returns ~-0.462
Gamma.prototype.kurtosis
Returns the excess kurtosis.
var gamma = new Gamma( 4.0, 12.0 );
var kurtosis = gamma.kurtosis;
// returns 1.5
Gamma.prototype.mean
Returns the expected value.
var gamma = new Gamma( 4.0, 12.0 );
var mu = gamma.mean;
// returns ~0.333
Gamma.prototype.mode
Returns the mode.
var gamma = new Gamma( 4.0, 12.0 );
var mode = gamma.mode;
// returns 0.25
Gamma.prototype.skewness
Returns the skewness.
var gamma = new Gamma( 4.0, 12.0 );
var skewness = gamma.skewness;
// returns 1.0
Gamma.prototype.stdev
Returns the standard deviation.
var gamma = new Gamma( 4.0, 12.0 );
var s = gamma.stdev;
// returns ~0.167
Gamma.prototype.variance
Returns the variance.
var gamma = new Gamma( 4.0, 12.0 );
var s2 = gamma.variance;
// returns ~0.028
Methods
Gamma.prototype.cdf( x )
Evaluates the cumulative distribution function (CDF).
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.cdf( 0.5 );
// returns ~0.594
Gamma.prototype.logcdf( x )
Evaluates the natural logarithm of the cumulative distribution function (CDF).
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.logcdf( 0.5 );
// returns ~-0.521
Gamma.prototype.logpdf( x )
Evaluates the natural logarithm of the probability density function (PDF).
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.logpdf( 0.8 );
// returns ~-0.651
Gamma.prototype.mgf( t )
Evaluates the moment-generating function (MGF).
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.mgf( 0.5 );
// returns ~1.306
Gamma.prototype.pdf( x )
Evaluates the probability density function (PDF).
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.pdf( 0.8 );
// returns ~0.522
Gamma.prototype.quantile( p )
Evaluates the quantile function at probability p
.
var gamma = new Gamma( 2.0, 4.0 );
var y = gamma.quantile( 0.5 );
// returns ~0.42
y = gamma.quantile( 1.9 );
// returns NaN
Examples
var Gamma = require( '@stdlib/stats/base/dists/gamma/ctor' );
var gamma = new Gamma( 2.0, 4.0 );
var mu = gamma.mean;
// returns 0.5
var mode = gamma.mode;
// returns 0.25
var s2 = gamma.variance;
// returns 0.125
var y = gamma.cdf( 0.8 );
// returns ~0.829