Moment-Generating Function
Exponential distribution moment-generating function (MGF).
The moment-generating function for an exponential random variable is
where lambda > 0
is the rate parameter. For t >= lambda
, the MGF is undefined.
Usage
var mgf = require( '@stdlib/stats/base/dists/exponential/mgf' );
mgf( t, lambda )
Evaluates the moment-generating function (MGF) for an exponential distribution.
var y = mgf( 2.0, 3.0 );
// returns 3.0
y = mgf( 0.4, 1.2 );
// returns 1.5
If provided NaN
as any argument, the function returns NaN
.
var y = mgf( NaN, 0.0 );
// returns NaN
y = mgf( 0.0, NaN );
// returns NaN
If provided lambda < 0
or t >= lambda
, the function returns NaN
.
var y = mgf( -2.0, -1.0 );
// returns NaN
y = mgf( 3.0, 2.0 );
// returns NaN
mgf.factory( lambda )
Returns a function for evaluating the moment-generating function of an exponential distribution with parameter lambda
(rate parameter).
var mymgf = mgf.factory( 4.0 );
var y = mymgf( 3.0 );
// returns 4.0
Examples
var randu = require( '@stdlib/random/base/randu' );
var mgf = require( '@stdlib/stats/base/dists/exponential/mgf' );
var lambda;
var t;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
t = randu() * 10.0;
lambda = randu() * 10.0;
y = mgf( t, lambda );
console.log( 'x: %d, λ: %d, M_X(t;λ): %d', t.toFixed( 4 ), lambda.toFixed( 4 ), y.toFixed( 4 ) );
}