Probability Mass Function
Discrete uniform distribution probability mass function (PMF).
The probability mass function (PMF) for a discrete uniform random variable is
where a
is the minimum support and b
is the maximum support of the distribution. The parameters must satisfy a <= b
.
Usage
var pmf = require( '@stdlib/stats/base/dists/discrete-uniform/pmf' );
pmf( x, a, b )
Evaluates the probability mass function (PMF) for a discrete uniform distribution with parameters a
(minimum support) and b
(maximum support).
var y = pmf( 2.0, 0, 4 );
// returns ~0.2
y = pmf( 5.0, 0, 4 );
// returns 0.0
y = pmf( 3, -4, 4 );
// returns ~0.111
If provided NaN
as any argument, the function returns NaN
.
var y = pmf( NaN, -2, 2 );
// returns NaN
y = pmf( 1.0, NaN, 4 );
// returns NaN
y = pmf( 2.0, 0, NaN );
// returns NaN
If a
or b
is not an integer value, the function returns NaN
.
var y = pmf( 2.0, 1, 5.5 );
// returns NaN
If provided a > b
, the function returns NaN
.
var y = pmf( 2.0, 3, 2 );
// returns NaN
pmf.factory( a, b )
Returns a function
for evaluating the PMF for a discrete uniform distribution with parameters a
(minimum support) and b
(maximum support).
var myPDF = pmf.factory( 6, 7 );
var y = myPDF( 7.0 );
// returns 0.5
y = myPDF( 5.0 );
// returns 0.0
Examples
var randint = require( '@stdlib/random/base/discrete-uniform' );
var pmf = require( '@stdlib/stats/base/dists/discrete-uniform/pmf' );
var randa = randint.factory( 0, 10 );
var randb = randint.factory();
var a;
var b;
var x;
var y;
var i;
for ( i = 0; i < 25; i++ ) {
a = randa();
x = randb( a, a+randa() );
b = randb( a, a+randa() );
y = pmf( x, a, b );
console.log( 'x: %d, a: %d, b: %d, P(X=x;a,b): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}