Entropy

Arcsine distribution differential entropy.

The differential entropy (in nats) for an arcsine random variable with minimum support a and maximum support b is

h left-parenthesis upper X right-parenthesis equals ln StartFraction pi Over 4 EndFraction

Usage

var entropy = require( '@stdlib/stats/base/dists/arcsine/entropy' );

entropy( a, b )

Returns the differential entropy of an arcsine distribution with minimum support a and maximum support b (in nats).

var v = entropy( 0.0, 1.0 );
// returns ~-0.242

v = entropy( 4.0, 12.0 );
// returns ~1.838

v = entropy( 2.0, 8.0 );
// returns ~1.55

If provided NaN as any argument, the function returns NaN.

var v = entropy( NaN, 2.0 );
// returns NaN

v = entropy( 2.0, NaN );
// returns NaN

If provided a >= b, the function returns NaN.

var y = entropy( 3.0, 2.0 );
// returns NaN

y = entropy( 3.0, 3.0 );
// returns NaN

Examples

var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var entropy = require( '@stdlib/stats/base/dists/arcsine/entropy' );

var a;
var b;
var v;
var i;

for ( i = 0; i < 10; i++ ) {
    a = ( randu()*10.0 );
    b = ( randu()*10.0 ) + a + EPS;
    v = entropy( a, b );
    console.log( 'a: %d, b: %d, h(X;a,b): %d', a.toFixed( 4 ), b.toFixed( 4 ), v.toFixed( 4 ) );
}

C APIs

Usage

#include "stdlib/stats/base/dists/arcsine/entropy.h"

stdlib_base_dists_arcsine_entropy( a, b )

Returns the differential entropy of an arcsine distribution.

double out = stdlib_base_dists_arcsine_entropy( -4.0, 4.0 );
// returns ~1.838

The function accepts the following arguments:

  • a: [in] double minimum support.
  • b: [in] double maximum support.
double stdlib_base_dists_arcsine_entropy( const double a, const double b );

Examples

#include "stdlib/stats/base/dists/arcsine/entropy.h"
#include <stdlib.h>
#include <stdio.h>

static double random_uniform( const double min, const double max ) {
    double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
    return min + ( v*(max-min) );
}

int main( void ) {
    double a;
    double b;
    double y;
    int i;

    for ( i = 0; i < 25; i++ ) {
        a = random_uniform( 0.0, 20.0 );
        b = random_uniform( 20.0, a );
        y = stdlib_base_dists_arcsine_entropy( a, b );
        printf( "x: %lf, a: %lf, b: %lf, h(X;a,b): %lf\n", a, b, y );
    }
}
Did you find this page helpful?