cinv
Compute the inverse of a double-precision complex floating-point number.
The inverse (or reciprocal) of a non-zero complex number z = a + bi
is defined as
Usage
var cinv = require( '@stdlib/math/base/special/cinv' );
cinv( z )
Computes the inverse of a double-precision complex floating-point number.
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var v = cinv( new Complex128( 2.0, 4.0 ) );
// returns <Complex128>
var re = real( v );
// returns 0.1
var im = imag( v );
// returns -0.2
Examples
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var uniform = require( '@stdlib/random/base/uniform' );
var cinv = require( '@stdlib/math/base/special/cinv' );
var z1;
var z2;
var i;
for ( i = 0; i < 100; i++ ) {
z1 = new Complex128( uniform( -50.0, 50.0 ), uniform( -50.0, 50.0 ) );
z2 = cinv( z1 );
console.log( '1.0 / (%s) = %s', z1.toString(), z2.toString() );
}
C APIs
Usage
#include "stdlib/math/base/special/cinv.h"
stdlib_base_cinv( z )
Computes the inverse of a double-precision complex floating-point number.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"
stdlib_complex128_t z = stdlib_complex128( 2.0, 4.0 );
stdlib_complex128_t out = stdlib_base_cinv( z );
double re = stdlib_complex128_real( out );
// returns 0.1
double im = stdlib_complex128_imag( out );
// returns -0.2
The function accepts the following arguments:
- z:
[in] stdlib_complex128_t
input value.
stdlib_complex128_t stdlib_base_cinv( const stdlib_complex128_t z );
Examples
#include "stdlib/math/base/special/cinv.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>
int main() {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, -1.5 ),
stdlib_complex128( 0.0, 0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re1;
double im1;
double re2;
double im2;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
y = stdlib_base_cinv( v );
stdlib_complex128_reim( v, &re1, &im1 );
stdlib_complex128_reim( y, &re2, &im2 );
printf( "cinv(%lf + %lfi) = %lf + %lfi\n", re1, im1, re2, im2 );
}
}
References
- Smith, Robert L. 1962. "Algorithm 116: Complex Division." Commun. ACM 5 (8). New York, NY, USA: ACM: 435. doi:10.1145/368637.368661.
- Stewart, G. W. 1985. "A Note on Complex Division." ACM Trans. Math. Softw. 11 (3). New York, NY, USA: ACM: 238–41. doi:10.1145/214408.214414.
- Priest, Douglas M. 2004. "Efficient Scaling for Complex Division." ACM Trans. Math. Softw. 30 (4). New York, NY, USA: ACM: 389–401. doi:10.1145/1039813.1039814.
- Baudin, Michael, and Robert L. Smith. 2012. "A Robust Complex Division in Scilab." arXiv abs/1210.4539 [cs.MS] (October): 1–25. <https://arxiv.org/abs/1210.4539>.