cdiv
Divide two double-precision complex floating-point numbers.
Usage
var cdiv = require( '@stdlib/math/base/ops/cdiv' );
cdiv( z1, z2 )
Divides two double-precision complex floating-point numbers.
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var z1 = new Complex128( -13.0, -1.0 );
var z2 = new Complex128( -2.0, 1.0 );
var v = cdiv( z1, z2 );
// returns <Complex128>
var re = real( v );
// returns 5.0
var im = imag( v );
// returns 3.0
Examples
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var cdiv = require( '@stdlib/math/base/ops/cdiv' );
function randomComplex() {
var re = discreteUniform( -50, 50 );
var im = discreteUniform( -50, 50 );
return new Complex128( re, im );
}
var z1;
var z2;
var z3;
var i;
for ( i = 0; i < 100; i++ ) {
z1 = randomComplex();
z2 = randomComplex();
z3 = cdiv( z1, z2 );
console.log( '(%s) / (%s) = %s', z1.toString(), z2.toString(), z3.toString() );
}
C APIs
Usage
#include "stdlib/math/base/ops/cdiv.h"
stdlib_base_cdiv( z1, z2 )
Divides two double-precision complex floating-point numbers.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"
stdlib_complex128_t z1 = stdlib_complex128( -13.0, -1.0 );
stdlib_complex128_t z2 = stdlib_complex128( -2.0, 1.0 );
stdlib_complex128_t out = stdlib_base_cdiv( z1, z2 );
double re = stdlib_complex128_real( out );
// returns 5.0
double im = stdlib_complex128_imag( out );
// returns 3.0
The function accepts the following arguments:
- z1:
[in] stdlib_complex128_t
input value. - z2:
[in] stdlib_complex128_t
input value.
stdlib_complex128_t stdlib_base_cdiv( const stdlib_complex128_t z1, const stdlib_complex128_t z2 );
Examples
#include "stdlib/math/base/ops/cdiv.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, 1.5 ),
stdlib_complex128( 0.0, -0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re;
double im;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
stdlib_complex128_reim( v, &re, &im );
printf( "z = %lf + %lfi\n", re, im );
y = stdlib_base_cdiv( v, v );
stdlib_complex128_reim( y, &re, &im );
printf( "cdiv(z, z) = %lf + %lfi\n", re, im );
}
}
References
- Smith, Robert L. 1962. "Algorithm 116: Complex Division." Commun. ACM 5 (8). New York, NY, USA: ACM: 435. doi:10.1145/368637.368661.
- Stewart, G. W. 1985. "A Note on Complex Division." ACM Trans. Math. Softw. 11 (3). New York, NY, USA: ACM: 238–41. doi:10.1145/214408.214414.
- Priest, Douglas M. 2004. "Efficient Scaling for Complex Division." ACM Trans. Math. Softw. 30 (4). New York, NY, USA: ACM: 389–401. doi:10.1145/1039813.1039814.
- Baudin, Michael, and Robert L. Smith. 2012. "A Robust Complex Division in Scilab." arXiv abs/1210.4539 [cs.MS] (October): 1–25. <https://arxiv.org/abs/1210.4539>.