ssorthp

Sort a single-precision floating-point strided array using heapsort.

Usage

var ssorthp = require( '@stdlib/blas/ext/base/ssorthp' );

ssorthp( N, order, x, stride )

Sorts a single-precision floating-point strided array using heapsort.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0 ] );

ssorthp( x.length, 1.0, x, 1 );
// x => <Float32Array>[ -4.0, -2.0, 1.0, 3.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • order: sort order. If order < 0.0, the input strided array is sorted in decreasing order. If order > 0.0, the input strided array is sorted in increasing order. If order == 0.0, the input strided array is left unchanged.
  • x: input Float32Array.
  • stride: index increment.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to sort every other element

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0 ] );

ssorthp( 2, -1.0, x, 2 );
// x => <Float32Array>[ 3.0, -2.0, 1.0, -4.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array/float32' );

// Initial array...
var x0 = new Float32Array( [ 1.0, 2.0, 3.0, 4.0 ] );

// Create an offset view...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );

// Sort every other element...
ssorthp( 2, -1.0, x1, 2 );
// x0 => <Float32Array>[ 1.0, 4.0, 3.0, 2.0 ]

ssorthp.ndarray( N, order, x, stride, offset )

Sorts a single-precision floating-point strided array using heapsort and alternative indexing semantics.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0 ] );

ssorthp.ndarray( x.length, 1.0, x, 1, 0 );
// x => <Float32Array>[ -4.0, -2.0, 1.0, 3.0 ]

The function has the following additional parameters:

  • offset: starting index.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to access only the last three elements of the strided array

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

ssorthp.ndarray( 3, 1.0, x, 1, x.length-3 );
// x => <Float32Array>[ 1.0, -2.0, 3.0, -6.0, -4.0, 5.0 ]

Notes

  • If N <= 0 or order == 0.0, both functions return the strided array unchanged.
  • The algorithm distinguishes between -0 and +0. When sorted in increasing order, -0 is sorted before +0. When sorted in decreasing order, -0 is sorted after +0.
  • The algorithm sorts NaN values to the end. When sorted in increasing order, NaN values are sorted last. When sorted in decreasing order, NaN values are sorted first.
  • The algorithm has space complexity O(1) and time complexity O(N log2 N).
  • The algorithm is unstable, meaning that the algorithm may change the order of strided array elements which are equal or equivalent (e.g., NaN values).
  • The input strided array is sorted in-place (i.e., the input strided array is mutated).

Examples

var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array/filled-by' );
var ssorthp = require( '@stdlib/blas/ext/base/ssorthp' );

var rand = discreteUniform( -100, 100 );
var x = filledarrayBy( 10, 'float32', rand );

console.log( x );

ssorthp( x.length, -1.0, x, -1 );
console.log( x );

References

  • Williams, John William Joseph. 1964. "Algorithm 232: Heapsort." Communications of the ACM 7 (6). New York, NY, USA: Association for Computing Machinery: 347–49. doi:10.1145/512274.512284.
  • Floyd, Robert W. 1964. "Algorithm 245: Treesort." Communications of the ACM 7 (12). New York, NY, USA: Association for Computing Machinery: 701. doi:10.1145/355588.365103.
Did you find this page helpful?